Home Search Profile

Data Science Pro 2024: Python, Pandas & ML Mastery

Focused View

4:55:07

  • 1 - Introduction.mp4
    08:04
  • 2 - Python Data Types.mp4
    02:29
  • 3 - Operators.mp4
    00:59
  • 4 - Arithmatic Operators.mp4
    03:11
  • 5 - Assignment Operators.mp4
    06:03
  • 6 - Comparison Operators.mp4
    03:17
  • 7 - More on Strings.mp4
    08:14
  • 8 - String Methods.mp4
    27:25
  • 9 - Lists.mp4
    09:58
  • 10 - Tuples.mp4
    03:24
  • 11 - Sets.mp4
    06:28
  • 12 - Dictionaries.mp4
    07:55
  • 13 - Identity Operators.mp4
    02:17
  • 14 - Compound Data Structures.mp4
    06:00
  • 15 - Python loops.mp4
    04:13
  • 16 - Range Understanding.mp4
    07:20
  • 17 - Creating and Modifying Lists.mp4
    05:09
  • 18 - Looping Through Dictionaries.mp4
    02:38
  • 19 - Enumerate Function.mp4
    02:46
  • 20 - List Comprehentions.mp4
    01:45
  • 21 - Adding Conditionals to List Comprehentions.mp4
    03:27
  • 22 - Python Functions.mp4
    02:34
  • 23 - Functions Parameters.mp4
    02:14
  • 24 - Return values.mp4
    01:51
  • 25 - Default Parameters.mp4
    01:41
  • 26 - VariableLength Arguments.mp4
    03:30
  • 27 - Lambda Functions.mp4
    01:19
  • 28 - Higher Order Functions.mp4
    05:30
  • 29 - Recursive Functions.mp4
    02:54
  • 30 - Docstrings.mp4
    01:50
  • 31 - Functions Annotations.mp4
    03:02
  • 32 - Nested Functions.mp4
    01:50
  • 33 - Decorators.mp4
    04:12
  • 34 - Introduction to numpy.mp4
    08:37
  • 35 - Array Attributes.mp4
    02:41
  • 36 - Array Indexing and Slicing.mp4
    04:29
  • 37 - Array Operations.mp4
    03:17
  • 38 - Reshaping Arrays.mp4
    02:41
  • 39 - Stacking and Splitting Arrays.mp4
    04:22
  • 40 - Splitting Arrays.mp4
    01:52
  • 41 - Broadcasting.mp4
    01:52
  • 42 - Boolean Indexing and Filtering.mp4
    04:07
  • 43 - Advanced Array Manipulations.mp4
    12:47
  • 44 - Introduction to Pandas.mp4
    04:41
  • 45 - Pandas Series.mp4
    04:43
  • 46 - Pandas DataFames.mp4
    06:58
  • 47 - Loading Data Into a DataFrame.mp4
    04:11
  • 48 - Handling Missing Data NaN Values.mp4
    06:06
  • 49 - Basic DataFrame Operations.mp4
    04:29
  • 50 - Grouping Data in Pandas.mp4
    06:08
  • 51 - Merging and Joining DataFrames.mp4
    07:58
  • 52 - Data Cleaning.mp4
    07:25
  • 53 - Introduction to Machine Learning and Scikitlearn.mp4
    03:50
  • 54 - Data Preprocessing.mp4
    07:47
  • 55 - Handling Missing Values.mp4
    03:55
  • 56 - Features Scaling.mp4
    05:22
  • 57 - Encoding Categorical Variables.mp4
    06:49
  • 58 - Decision Trees.mp4
    06:29
  • 59 - Support Vector Machine.mp4
    06:02
  • More details


    Course Overview

    Launch your data science career with this complete Python course covering data analysis, machine learning, and visualization using industry-standard tools like Pandas and Scikit-learn.

    What You'll Learn

    • Master Python fundamentals for data science applications
    • Clean, analyze and visualize data with Pandas and NumPy
    • Build predictive models using Scikit-learn algorithms

    Who This Is For

    • Aspiring data scientists starting from scratch
    • Analysts transitioning to Python-based workflows
    • Professionals adding data skills to their toolkit

    Key Benefits

    • Hands-on projects with real-world datasets
    • Comprehensive coverage from basics to ML
    • Career-ready data science skills

    Curriculum Highlights

    1. Python Foundations for Data Science
    2. Data Wrangling with Pandas
    3. Machine Learning with Scikit-learn
    Focused display
    Category
    • language english
    • Training sessions 59
    • duration 4:55:07
    • Release Date 2025/05/10