Home Search Profile

GCP Data Engineer Pro 2024: Master BigQuery & Pipelines

Focused View

17:00:29

  • 1 - Introduction to instructor.html
  • 2 - Introduction to Google Cloud Data Engineer certification.mp4
    11:45
  • 3 - How to register for GCP certifications.mp4
    08:00
  • 4 - How to Create Free trial account in Google Cloud.mp4
    01:41
  • 5 - Compute Services Overview.mp4
    08:03
  • 6 - Creating First GCP VM Instance.mp4
    10:15
  • 7 - Google App Engine.mp4
    13:18
  • 8 - Google cloud Networking Services.mp4
    01:03:29
  • 9 - Overview of Storage services.mp4
    52:06
  • 10 - Google Cloud Storage Introduction.mp4
    19:19
  • 11 - Google Cloud Storage features Handson.mp4
    19:18
  • 12 - Persistent Disks and snapshots.mp4
    35:44
  • 13 - Creating Snapshot Policy.mp4
    05:55
  • 14 - Mount GCS Bucket as Filesystem.mp4
    07:59
  • 15 - Getting Started with Cloud SQL.mp4
    15:25
  • 16 - Migrate Onprem MySQL to Google Cloud.mp4
    12:42
  • 17 - Cloud Spanner.mp4
    17:39
  • 18 - Create Cloud Spanner Instance.mp4
    17:39
  • 19 - Create Cloud Spanner Change Stream.mp4
    19:16
  • 20 - Cloud BigTable.mp4
    05:35
  • 21 - Create BigTable instance.mp4
    12:39
  • 22 - Google Cloud BigQuery.mp4
    05:33
  • 23 - Create Dataset and Table in BigQuery.mp4
    07:47
  • 24 - Partitioning in BigQuery.mp4
    09:12
  • 25 - BigQuery Access Control.mp4
    08:05
  • 26 - Federated Queries in BigQuery.mp4
    12:19
  • 27 - Restore Deleted data in BigQuery.mp4
    13:33
  • 28 - Streaming Buffer in BigQuery.mp4
    15:02
  • 29 - Gemini AI in BigQuery Former Duet AI.mp4
    08:33
  • 30 - Data Analytics Services Overview.mp4
    09:50
  • 31 - Cloud PubSub.mp4
    05:56
  • 32 - Introduction to Dataflow.mp4
    06:22
  • 33 - Create batch Job using Dataflow.mp4
    05:00
  • 34 - Load Data from GCS to BigQuery using Dataflow.mp4
    15:57
  • 35 - Extract Data from Cloud Spanner to GCS.mp4
    16:02
  • 36 - Create Streaming Job using Dataflow.mp4
    19:16
  • 37 - Create Spanner change stream using Dataflow streaming Job.mp4
    19:16
  • 38 - Introduction to Cloud Data Fusion.mp4
    04:28
  • 39 - Create Data Pipeline using Cloud Data Fusion.mp4
    14:36
  • 40 - Introduction to Cloud Composer.mp4
    08:24
  • 41 - Creating Cloud Composer Environment.mp4
    04:36
  • 42 - Cloud Composer Architecture.mp4
    11:31
  • 43 - Creating Airflow Dag using Cloud composer.mp4
    33:29
  • 44 - Restarting Composer Services.mp4
    08:15
  • 45 - Overview of Google Cloud AIML Services.mp4
    10:12
  • 46 - Vision API.mp4
    08:31
  • 47 - Natural Language Processing API.mp4
    12:28
  • 48 - Video Intelligence API.mp4
    03:43
  • 49 - Vertex AI Studio Now AI Studio.mp4
    09:17
  • 50 - Custom Machine learning model using Vertex AI.mp4
    20:11
  • 51 - Create Dashboard in Data Studio.mp4
    27:39
  • 52 - Encrypting persistent Disk.mp4
    12:25
  • 53 - Encryption at Cloud Storage Bucket.mp4
    25:10
  • 54 - Data loss Prevention API.mp4
    06:53
  • 55 - Inspect Sensitive Data Using Data Loss Prevention API.mp4
    18:40
  • 56 - Creating an ETL Data Pipeline with Cloud Data Fusion AirflowPart1.mp4
    53:29
  • 56 - Source Code.txt
  • 57 - Creating an ETL Data Pipeline with Cloud Data Fusion Airflow part2.mp4
    31:47
  • 58 - Cricket Statistics Data Pipeline in Google Cloud using Airflow.mp4
    47:39
  • 58 - Source Code.txt
  • 59 - Automated Data Pipeline for Sales Data.mp4
    56:58
  • 59 - Source Code.txt
  • 60 - Building a Sentiment Analysis Data Pipeline from Support Chat using Gemini.mp4
    23:41
  • 61 - Automate GCS to BigQuery Dataload.mp4
    30:57
  • More details


    Course Overview

    Become a certified GCP Data Engineer with this comprehensive course covering data pipelines, BigQuery, AI integration, and hands-on projects using Google Cloud's data services.

    What You'll Learn

    • Design and implement scalable data pipelines with Dataflow and Data Fusion
    • Master BigQuery analytics, partitioning, and federated queries
    • Integrate AI/ML with Vertex AI and Gemini for advanced data solutions

    Who This Is For

    • Aspiring data engineers building GCP expertise
    • Data analysts transitioning to engineering roles
    • Cloud professionals specializing in data solutions

    Key Benefits

    • Hands-on projects including real-world ETL pipelines
    • Covers both fundamental and advanced GCP data services
    • Prepares for Google Cloud Data Engineer certification

    Curriculum Highlights

    1. Core GCP Services: Storage, Databases & BigQuery
    2. Data Pipeline Engineering with Dataflow/Data Fusion
    3. AI-Enhanced Data Solutions & Security Best Practices
    Focused display
    • language english
    • Training sessions 60
    • duration 17:00:29
    • Release Date 2025/04/26