Master Android ML: Build Smart Apps with TensorFlow Lite
Focused View
4:46:28
1 -What is Machine Learning.mp4
03:15
2 -Supervised Machine Learning.mp4
03:33
3 -Regression and Classification.mp4
02:08
4 -Unsupervised Machine Learning & Reinforcement Learning.mp4
03:19
5 -Deep Learning and Neural Network Introduction.mp4
05:56
6 -Neural Network Example.mp4
10:05
7 -Working of Neural Networks for Image Classification.mp4
04:51
8 -Basic Deep Learning Concepts.mp4
04:49
1 -Google Colab Introduction.mp4
06:43
2 -Python.zip
2 -Python Introduction & data types.mp4
04:05
3 -Python Numbers.mp4
02:36
4 -Python Strings.mp4
02:49
5 -Python Lists.mp4
06:50
6 -Python dictionary & tuples.mp4
03:11
7 -Python loops & conditional statements.mp4
04:40
8 -File handling in Python.mp4
04:44
1 -DataScience+Libraries.zip
1 -Numpy Introduction.mp4
05:52
2 -Numpy Functions and Generating Random Values.mp4
03:21
3 -Numpy Operators.mp4
02:12
4 -Matrix Multiplications and Sorting in Numpy.mp4
02:08
5 -Pandas Introduction.mp4
04:32
6 -Loading CSV in pandas.mp4
02:14
7 -Handling Missing values in dataset with pandas.mp4
03:29
8 -Matplotlib & charts in python.mp4
03:57
9 -Dealing images with Matplotlib.mp4
03:01
1 -Tensorflow.zip
1 -Tensorflow Introduction Variables & Constants.mp4
06:29
2 -Shapes & Ranks of Tensors.mp4
06:50
3 -Matrix Multiplication & Ragged Tensors.mp4
04:51
4 -Tensorflow Operations.mp4
02:01
5 -Generating Random Values in Tensorflow.mp4
06:15
6 -Tensorflow Checkpoints.mp4
03:34
7 -Tensorflow Lite Introduction & Advantages.mp4
04:49
1 -BasicExample.zip
1 -Train a simple regression model for Android.mp4
09:50
2 -Testing model and converting it to a tflite(Tensorflow lite) format for Android.mp4
03:18
3 -Model training for Android app development overview.mp4
01:44
4 -Creating a new Android Studio Project and GUI of Application.mp4
08:29
5 -Adding Tensorflow Lite Library In Android & Loading Tensorflow Lite Model.mp4
08:00
6 -Passing Input to Tensorflow Lite Model in Android and Getting Output.mp4
07:24
1 -Section Introduction.mp4
02:31
2 -Data Collection Finding Fuel Efficiency Prediction Dataset.mp4
04:56
2 -FuelEfficiencyPrediction.zip
3 -Loading Dataset in Python for Model Training.mp4
07:45
4 -Handling missing Values in Fuel Efficiency Prediction Dataset.mp4
03:24
5 -Handling Categorical Columns in Dataset for Model Training.mp4
04:38
6 -Training and testing datasets.mp4
04:19
7 -Normalization Introduction.mp4
02:12
8 -Dataset Normalization.mp4
02:40
9 -Training Fuel Efficiency Prediction Model in Tensorflow.mp4
07:04
10 -Testing Trained Model and converting it to Tensorflow Lite Model.mp4
04:20
11 -Training Fuel Efficiency Prediction Model Overview.mp4
04:30
1 -Setting up Android Application for fuel efficiency prediction.mp4
07:19
2 -Loading Tensorflow Lite models & performaning normalization in Android.mp4
08:38
3 -Passing input to Tensorflow Lite model in Android and getting output.mp4
03:40
4 -Testing fuel efficiency prediction android application.mp4
01:54
1 -Section Introduction.mp4
01:57
2 -Getting dataset for training house price prediction model.mp4
03:45
2 -HousePricePrediction.zip
3 -Loading dataset for training tflite model.mp4
07:19
4 -Training & Evaluating house price prediction model.mp4
06:30
5 -Retraining House Price Prediction Model.mp4
04:04
6 -House Price Prediction Android App.mp4
07:28
7 -Test the Android App.mp4
02:22
1 -Image Classification Introduction & Applications.mp4
05:19
More details
Course Overview
This comprehensive course teaches you to train and integrate TensorFlow Lite models for Android, covering image classification, object detection, and regression to build intelligent Kotlin applications with real-world use cases.
What You'll Learn
- Train ML models for Android including image classification, object detection, and regression
- Integrate TensorFlow Lite models into Android Kotlin apps with live camera processing
- Master Python data science libraries (NumPy, Pandas) for Android ML model training
Who This Is For
- Android developers wanting to add ML capabilities to their apps
- ML engineers looking to deploy models in mobile applications
- Tech enthusiasts bridging ML and mobile development
Key Benefits
- Hands-on projects: fruit detection, tumor classification, and price prediction apps
- Complete workflow from data collection to model deployment
- Practical skills for real-world Android ML applications
Curriculum Highlights
- Machine Learning & Deep Learning fundamentals for Android
- Python crash course for ML model training
- Training regression models (fuel efficiency, house price prediction)
Focused display
- language english
- Training sessions 61
- duration 4:46:28
- Release Date 2025/06/03