Home Search Profile

Master Android ML: Build Smart Apps with TensorFlow Lite

Focused View

4:46:28

  • 1 -What is Machine Learning.mp4
    03:15
  • 2 -Supervised Machine Learning.mp4
    03:33
  • 3 -Regression and Classification.mp4
    02:08
  • 4 -Unsupervised Machine Learning & Reinforcement Learning.mp4
    03:19
  • 5 -Deep Learning and Neural Network Introduction.mp4
    05:56
  • 6 -Neural Network Example.mp4
    10:05
  • 7 -Working of Neural Networks for Image Classification.mp4
    04:51
  • 8 -Basic Deep Learning Concepts.mp4
    04:49
  • 1 -Google Colab Introduction.mp4
    06:43
  • 2 -Python.zip
  • 2 -Python Introduction & data types.mp4
    04:05
  • 3 -Python Numbers.mp4
    02:36
  • 4 -Python Strings.mp4
    02:49
  • 5 -Python Lists.mp4
    06:50
  • 6 -Python dictionary & tuples.mp4
    03:11
  • 7 -Python loops & conditional statements.mp4
    04:40
  • 8 -File handling in Python.mp4
    04:44
  • 1 -DataScience+Libraries.zip
  • 1 -Numpy Introduction.mp4
    05:52
  • 2 -Numpy Functions and Generating Random Values.mp4
    03:21
  • 3 -Numpy Operators.mp4
    02:12
  • 4 -Matrix Multiplications and Sorting in Numpy.mp4
    02:08
  • 5 -Pandas Introduction.mp4
    04:32
  • 6 -Loading CSV in pandas.mp4
    02:14
  • 7 -Handling Missing values in dataset with pandas.mp4
    03:29
  • 8 -Matplotlib & charts in python.mp4
    03:57
  • 9 -Dealing images with Matplotlib.mp4
    03:01
  • 1 -Tensorflow.zip
  • 1 -Tensorflow Introduction Variables & Constants.mp4
    06:29
  • 2 -Shapes & Ranks of Tensors.mp4
    06:50
  • 3 -Matrix Multiplication & Ragged Tensors.mp4
    04:51
  • 4 -Tensorflow Operations.mp4
    02:01
  • 5 -Generating Random Values in Tensorflow.mp4
    06:15
  • 6 -Tensorflow Checkpoints.mp4
    03:34
  • 7 -Tensorflow Lite Introduction & Advantages.mp4
    04:49
  • 1 -BasicExample.zip
  • 1 -Train a simple regression model for Android.mp4
    09:50
  • 2 -Testing model and converting it to a tflite(Tensorflow lite) format for Android.mp4
    03:18
  • 3 -Model training for Android app development overview.mp4
    01:44
  • 4 -Creating a new Android Studio Project and GUI of Application.mp4
    08:29
  • 5 -Adding Tensorflow Lite Library In Android & Loading Tensorflow Lite Model.mp4
    08:00
  • 6 -Passing Input to Tensorflow Lite Model in Android and Getting Output.mp4
    07:24
  • 1 -Section Introduction.mp4
    02:31
  • 2 -Data Collection Finding Fuel Efficiency Prediction Dataset.mp4
    04:56
  • 2 -FuelEfficiencyPrediction.zip
  • 3 -Loading Dataset in Python for Model Training.mp4
    07:45
  • 4 -Handling missing Values in Fuel Efficiency Prediction Dataset.mp4
    03:24
  • 5 -Handling Categorical Columns in Dataset for Model Training.mp4
    04:38
  • 6 -Training and testing datasets.mp4
    04:19
  • 7 -Normalization Introduction.mp4
    02:12
  • 8 -Dataset Normalization.mp4
    02:40
  • 9 -Training Fuel Efficiency Prediction Model in Tensorflow.mp4
    07:04
  • 10 -Testing Trained Model and converting it to Tensorflow Lite Model.mp4
    04:20
  • 11 -Training Fuel Efficiency Prediction Model Overview.mp4
    04:30
  • 1 -Setting up Android Application for fuel efficiency prediction.mp4
    07:19
  • 2 -Loading Tensorflow Lite models & performaning normalization in Android.mp4
    08:38
  • 3 -Passing input to Tensorflow Lite model in Android and getting output.mp4
    03:40
  • 4 -Testing fuel efficiency prediction android application.mp4
    01:54
  • 1 -Section Introduction.mp4
    01:57
  • 2 -Getting dataset for training house price prediction model.mp4
    03:45
  • 2 -HousePricePrediction.zip
  • 3 -Loading dataset for training tflite model.mp4
    07:19
  • 4 -Training & Evaluating house price prediction model.mp4
    06:30
  • 5 -Retraining House Price Prediction Model.mp4
    04:04
  • 6 -House Price Prediction Android App.mp4
    07:28
  • 7 -Test the Android App.mp4
    02:22
  • 1 -Image Classification Introduction & Applications.mp4
    05:19
  • More details


    Course Overview

    This comprehensive course teaches you to train and integrate TensorFlow Lite models for Android, covering image classification, object detection, and regression to build intelligent Kotlin applications with real-world use cases.

    What You'll Learn

    • Train ML models for Android including image classification, object detection, and regression
    • Integrate TensorFlow Lite models into Android Kotlin apps with live camera processing
    • Master Python data science libraries (NumPy, Pandas) for Android ML model training

    Who This Is For

    • Android developers wanting to add ML capabilities to their apps
    • ML engineers looking to deploy models in mobile applications
    • Tech enthusiasts bridging ML and mobile development

    Key Benefits

    • Hands-on projects: fruit detection, tumor classification, and price prediction apps
    • Complete workflow from data collection to model deployment
    • Practical skills for real-world Android ML applications

    Curriculum Highlights

    1. Machine Learning & Deep Learning fundamentals for Android
    2. Python crash course for ML model training
    3. Training regression models (fuel efficiency, house price prediction)
    Focused display
    • language english
    • Training sessions 61
    • duration 4:46:28
    • Release Date 2025/06/03