Home Search Profile

Master Credit Risk Modeling with Python - Pro 2024

Focused View

5:59:05

  • 1 -Course Overview.mp4
    03:02
  • 2 -Setting Up Your Computer.mp4
    00:59
  • 3 -Overview of Credit Risk Models.mp4
    09:18
  • 4 -Applications in the Industry.mp4
    01:10
  • 1 -final project solution.zip
  • 1 - Documents.html
  • 1 - Python codes.html
  • 1 -Introduction to Probability of Default (PD) Models.mp4
    02:17
  • 2 -Example Case Presentation.mp4
    03:52
  • 3 -Application vs Behavioral Scorecards.mp4
    05:06
  • 1 -Dataset Information.mp4
    04:34
  • 2 -Loading data to the Python environment.mp4
    02:30
  • 1 -Data Quality Checks.mp4
    07:40
  • 2 -Data Cleaning.mp4
    07:38
  • 3 -Exploratory Data Analysis.mp4
    05:30
  • 4 -Exploratory Data Analysis - Based on Time.mp4
    05:42
  • 5 -Sector Best Practices.mp4
    02:59
  • 1 -Data Transformation Methods.mp4
    04:00
  • 2 -Data Transformation in Practice.mp4
    04:55
  • 3 -Sector Best Practices.mp4
    08:56
  • 1 -Data Splitting Methods.mp4
    04:28
  • 2 -Data Splitting In Practice.mp4
    04:38
  • 1 -Overview and Sector Best Practices.mp4
    05:29
  • 2 -Correlation Elimination.mp4
    03:45
  • 3 -Correlation Elimination In Practice.mp4
    03:50
  • 4 -Information Value.mp4
    01:21
  • 5 -Information Value in Practice.mp4
    01:44
  • 6 -Univariate Gini.mp4
    04:28
  • 7 -Univariate Gini In Practice.mp4
    04:27
  • 1 -Survival Analysis.mp4
    05:11
  • 2 -Survival Analysis In Practice.mp4
    04:45
  • 3 -Logistic Regression.mp4
    03:25
  • 4 -Logistic Regression In Practice.mp4
    05:00
  • 5 -Logistic Regression Model Explainability Methods.mp4
    01:30
  • 6 -Logistic Regression Model Explainability Methods In Practice.mp4
    01:30
  • 7 -Model Coefficients.mp4
    02:55
  • 8 -Logistic Regression - Max Gini Model.mp4
    03:50
  • 9 -Logistic Regression - Max Gini Model Predictions.mp4
    02:13
  • 10 -K Fold Cross Validation.mp4
    04:08
  • 11 -K Fold Cross Validation In Practice.mp4
    04:35
  • 12 -Sector Best Practices.mp4
    15:56
  • 1 -Advanced Feature Importance Overview.mp4
    08:19
  • 2 -Random Forest Feature Selection.mp4
    03:05
  • 3 -Shapley Values Feature Selection.mp4
    03:10
  • 4 -Permutation Feature Importance Selection.mp4
    02:35
  • 1 -XGBoost Overview.mp4
    09:58
  • 2 -XGBoost.mp4
    04:27
  • 3 -Approximate Coefficients for XGBoost.mp4
    02:45
  • 4 -Parameter Tuning for XGBoost.mp4
    02:05
  • 5 -Neural Networks Overview.mp4
    12:08
  • 6 -Neural Networks.mp4
    02:28
  • 7 -Parameter Tuning for Neural Networks.mp4
    03:37
  • 8 -Model Ensembling.mp4
    03:29
  • 9 -Model Ensembling In Practice.mp4
    02:40
  • 10 -Sector Best Practices.mp4
    02:26
  • 1 -Model Selection Methodology.mp4
    03:03
  • 2 -Model Selection In Practice.mp4
    01:54
  • 1 -Rating Scale Overview.mp4
    03:32
  • 2 -Rating Scale Generation.mp4
    03:32
  • 3 -Score Generation and Scaling.mp4
    03:42
  • 4 -Sector Best Practices.mp4
    05:00
  • 1 -Why Model Calibration Needed.mp4
    05:39
  • 2 -Bayesian Calibration.mp4
    04:03
  • 3 -Regression Calibration.mp4
    04:26
  • 4 -Sector Best Practices.mp4
    02:25
  • 1 -Model Validation Basics and Sector Best Practices.mp4
    06:12
  • 2 -Validation Metrics for Credit Scoring Models.mp4
    31:25
  • 3 -AUC ROC.mp4
    02:35
  • 4 -Time Series Gini.mp4
    03:21
  • 5 -Kolmogorov-Smirnov Test.mp4
    02:53
  • 6 -Confusion Matrix.mp4
    03:25
  • 7 -Stability Tests - PSI & SSI.mp4
    03:00
  • 8 -Variance Inflation Factor.mp4
    03:30
  • 9 -Herfindahl-Hirshman Index and Adjusted Herfindahl-Hirshman Index.mp4
    02:59
  • 10 -Anchor Point.mp4
    02:57
  • 11 -Chi-Square Test.mp4
    03:03
  • 12 -Binomial Test.mp4
    03:09
  • 13 -Adjusted Binomial Test.mp4
    03:13
  • 14 -Model Validation Thresholds.mp4
    04:15
  • 1 -Case Study 1 - U.S. based Financing Company.mp4
    05:27
  • 2 -Case Study 2 - UK based Fintech Startup.mp4
    05:25
  • 1 -Final Project Using Real-World Data.mp4
    02:32
  • More details


    Course Overview

    This comprehensive course teaches you to build advanced credit risk models using Python, covering everything from data preprocessing to model validation with real-world datasets and industry best practices.

    What You'll Learn

    • Construct complete credit risk models using Python
    • Apply advanced techniques like XGBoost and Neural Networks
    • Evaluate models using industry-standard validation metrics

    Who This Is For

    • Banking and finance professionals
    • Aspiring credit risk analysts
    • Data scientists in financial services

    Key Benefits

    • Hands-on experience with real-world datasets
    • Learn sector best practices from global experts
    • Master both classical and advanced modeling techniques

    Curriculum Highlights

    1. Fundamentals of Credit Risk Scoring
    2. Advanced Data Science Techniques
    3. Model Evaluation & Validation
    Focused display
    • language english
    • Training sessions 79
    • duration 5:59:05
    • Release Date 2025/06/10