Home Search Profile

Master Generative AI & ChatGPT-4o for Data Analysis 2024

Focused View

11:31:25

  • 1 - The Main Prompt Source of The Course.html
  • 2 - Course-Prompts.docx
  • 2 - Prompts.html
  • 3 - Github Link.html
  • 4 - Kaggle Link.html
  • 5 - Big News Introducing ChatGPT4o.mp4
    04:55
  • 6 - How to Use ChatGPT4o.mp4
    05:53
  • 7 - Chronological Development of ChatGPT.mp4
    05:21
  • 8 - What Are the Capabilities of ChatGPT4o.mp4
    04:33
  • 9 - As an App ChatGPT.mp4
    03:18
  • 10 - Voice Communication with ChatGPT4o.mp4
    04:50
  • 11 - Instant Translation in 50 Languages.mp4
    03:03
  • 12 - Interview Preparation with ChatGPT4o.mp4
    18:06
  • 13 - Visual Commentary with ChatGPT4o Lesson 1.mp4
    04:19
  • 14 - Visual Commentary with ChatGPT4o Lesson 2.mp4
    04:56
  • 15 - ChatGPT for Generative AI Introduction.mp4
    04:21
  • 16 - Accessing the Dataset.mp4
    01:35
  • 17 - First Task Field Knowledge.mp4
    11:12
  • 18 - Continuing with Field Knowledge.mp4
    05:42
  • 19 - Loading the Dataset and Understanding Variables.mp4
    07:55
  • 20 - Delving into the Details of Variables.mp4
    05:35
  • 21 - Lets Perform the First Analysis.mp4
    06:37
  • 22 - Updating Variable Names.mp4
    06:19
  • 23 - Examining Missing Values.mp4
    06:07
  • 24 - Examining Unique Values.mp4
    14:12
  • 25 - Examining Statistics of Variables Lesson 1.mp4
    15:15
  • 26 - Examining Statistics of Variables Lesson 2.mp4
    13:11
  • 27 - Examining Statistics of Variables Lesson 3.mp4
    09:19
  • 28 - Exploratory Data Analysis EDA.mp4
    09:59
  • 29 - Categorical Variables Analysis with Pie Chart Lesson 1.mp4
    10:40
  • 30 - Categorical Variables Analysis with Pie Chart Lesson 2.mp4
    09:35
  • 31 - Categorical Variables Analysis with Pie Chart Lesson 3.mp4
    06:52
  • 32 - Categorical Variables Analysis with Pie Chart Lesson 4.mp4
    16:44
  • 33 - Categorical Variables Analysis with Pie Chart Lesson 5.mp4
    11:19
  • 34 - Importance of Bivariate Analysis in Data Science.mp4
    07:16
  • 35 - Numerical Variables vs Target Variable Lesson 1.mp4
    06:43
  • 36 - Numerical Variables vs Target Variable Lesson 2.mp4
    09:56
  • 37 - Numerical Variables vs Target Variable Lesson 3.mp4
    08:24
  • 38 - Numerical Variables vs Target Variable Lesson 4.mp4
    03:36
  • 39 - Categoric Variables vs Target Variable Lesson 1.mp4
    03:38
  • 40 - Categoric Variables vs Target Variable Lesson 2.mp4
    05:31
  • 41 - Categoric Variables vs Target Variable Lesson 3.mp4
    05:21
  • 42 - Categoric Variables vs Target Variable Lesson 4.mp4
    04:45
  • 43 - Categoric Variables vs Target Variable Lesson 5.mp4
    05:51
  • 44 - Correlation Between Numerical and Categorical Variables and the Target Variable.mp4
    11:42
  • 45 - Correlation Between Numerical and Categorical Variables and the Target Variable.mp4
    07:57
  • 46 - Examining Numeric Variables Among Themselves Lesson 1.mp4
    06:12
  • 47 - Examining Numeric Variables Among Themselves Lesson 2.mp4
    06:56
  • 48 - Numerical Variables Categorical Variables Lesson 1.mp4
    18:12
  • 49 - Numerical Variables Categorical Variables Lesson 2.mp4
    06:01
  • 50 - Numerical Variables Categorical Variables Lesson 3.mp4
    05:21
  • 51 - Numerical Variables Categorical Variables Lesson 4.mp4
    05:17
  • 52 - Numerical Variables Categorical Variables Lesson 5.mp4
    05:48
  • 53 - Numerical Variables Categorical Variables with Swarm Plot Lesson 1.mp4
    12:33
  • 54 - Numerical Variables Categorical Variables with Swarm Plot Lesson 2.mp4
    07:19
  • 55 - Numerical Variables Categorical Variables with Swarm Plot Lesson 3.mp4
    07:01
  • 56 - Numerical Variables Categorical Variables with Swarm Plot Lesson 4.mp4
    04:35
  • 57 - Numerical Variables Categorical Variables with Swarm Plot Lesson 5.mp4
    04:31
  • 58 - Numerical Variables Categorical Variables with Swarm Plot Lesson 6.mp4
    08:48
  • 59 - Relationships between variables Analysis with Heatmap Lesson 1.mp4
    08:07
  • 60 - Relationships between variables Analysis with Heatmap Lesson 2.mp4
    14:44
  • 61 - Preparation for Modeling.mp4
    05:23
  • 62 - Dropping Columns with Low Correlation.mp4
    05:26
  • 63 - Struggling Outliers.mp4
    09:50
  • 64 - Visualizing Outliers Lesson 1.mp4
    06:30
  • 65 - Visualizing Outliers Lesson 2.mp4
    04:33
  • 66 - Visualizing Outliers Lesson 3.mp4
    03:51
  • 67 - Dealing with Outliers Lesson 1.mp4
    09:24
  • 68 - Dealing with Outliers Lesson 2.mp4
    13:50
  • 69 - Dealing with Outliers Lesson 3.mp4
    06:02
  • 70 - Dealing with Outliers Lesson 4.mp4
    06:38
  • 71 - Dealing with Outliers Lesson 5.mp4
    10:03
  • 72 - Determining Distributions.mp4
    11:24
  • 73 - Determining Distributions of Numeric Variables Lesson 1.mp4
    06:26
  • 74 - Determining Distributions of Numeric Variables Lesson 2.mp4
    04:06
  • 75 - Determining Distributions of Numeric Variables Lesson 3.mp4
    04:30
  • 76 - Determining Distributions of Numeric Variables Lesson 4.mp4
    08:20
  • 77 - Determining Distributions of Numeric Variables Lesson 5.mp4
    06:53
  • 78 - Applying One Hot Encoding Method to Categorical Variables Lesson.mp4
    05:19
  • 79 - Applying One Hot Encoding Method to Categorical Variables Lesson.mp4
    02:31
  • 80 - Feature Scaling with the RobustScaler Method for Machine Learning Algorithms.mp4
    03:44
  • 81 - Separating Data into Test and Training Set.mp4
    04:00
  • 82 - Logistic Regression Algorithm Lesson 1.mp4
    06:14
  • 83 - Logistic Regression Algorithm Lesson 2.mp4
    11:15
  • 84 - Cross Validation.mp4
    08:44
  • 85 - ROC Curve and Area Under Curve AUC Lesson 1.mp4
    06:56
  • 86 - ROC Curve and Area Under Curve AUC Lesson 2.mp4
    05:48
  • 87 - Hyperparameter Optimization with GridSearchCV.mp4
    07:33
  • 88 - Hyperparameter Tuning for Logistic Regression Model.mp4
    08:28
  • 89 - Decision Tree Algorithm Lesson 1.mp4
    05:50
  • 90 - Decision Tree Algorithm Lesson 2.mp4
    06:55
  • 91 - Support Vector Machine Algorithm Lesson 1.mp4
    05:34
  • 92 - Support Vector Machine Algorithm Lesson 2.mp4
    06:23
  • 93 - Random Forest Algorithm Lesson 1.mp4
    06:09
  • 94 - Random Forest Algorithm Lesson 2.mp4
    03:37
  • 95 - Random Forest Algorithm Lesson 3.mp4
    05:03
  • 96 - Random Forest Algorithm Lesson 4.mp4
    05:43
  • 97 - Project Conclusion.mp4
    10:35
  • 98 - Suggestions and Closing.mp4
    08:07
  • 99 - Generative AI for Data Analysis and Engineering with ChatGPT.html
  • More details


    Course Overview

    This comprehensive course teaches you to leverage ChatGPT-4o and generative AI for advanced data analysis, engineering, and machine learning applications. Master cutting-edge techniques to automate workflows, generate insights, and optimize data pipelines.

    What You'll Learn

    • Apply ChatGPT-4o for exploratory data analysis (EDA) and visualization
    • Implement machine learning algorithms with AI-enhanced feature engineering
    • Automate data workflows using generative AI tools and prompt engineering

    Who This Is For

    • Data Analysts seeking to automate tasks with generative AI
    • AI/ML enthusiasts exploring ChatGPT-4o's real-world applications
    • Beginners in Data Science wanting cutting-edge AI skills

    Key Benefits

    • Hands-on experience with ChatGPT-4o's latest capabilities
    • Master outlier detection, feature scaling, and model tuning
    • Access ready-to-use prompts and project files for immediate application

    Curriculum Highlights

    1. ChatGPT-4o innovations: Voice, translation, and visual analysis
    2. Advanced EDA with bivariate analysis and heatmap visualization
    3. Machine learning with Logistic Regression, SVM, and Random Forest
    Focused display
    • language english
    • Training sessions 94
    • duration 11:31:25
    • Release Date 2025/06/12