Home Search Profile

Master Generative AI & LLMs: NVIDIA Pro Certification 2024

Focused View

17:54:15

  • 1. Welcome to the Course.mp4
    03:09
  • 2. What makes this course Unique.mp4
    05:42
  • 1. Introduction to Machine Learning Fundamentals.mp4
    05:45
  • 2. Introduction to Machine Learning.mp4
    16:52
  • 3. Types of Machine Learning.mp4
    03:59
  • 4. Linear Regression & Evaluation Metrics for Regression.mp4
    22:44
  • 5. Regularization and Assumptions of Linear Regression.mp4
    26:01
  • 6. Logistic Regression.mp4
    08:46
  • 7. Gradient Descent.mp4
    08:05
  • 8. Logistic Regression Implementation and EDA.mp4
    21:05
  • 9. Evaluation Metrics for Classification.mp4
    26:35
  • 10. Decision Tree Algorithms.mp4
    11:30
  • 11. Loss Functions of Decision Trees.mp4
    09:51
  • 12. Decision Tree Algorithm Implementation.mp4
    15:44
  • 13. Overfit Vs Underfit - Kfold Cross validation.mp4
    18:26
  • 14. Hyperparameter Optimization Techniques.mp4
    29:38
  • 15. KNN Algorithm.mp4
    09:31
  • 16. SVM Algorithm.mp4
    23:56
  • 17. Ensemble Learning - Voting Classifier.mp4
    14:32
  • 18. Ensemble Learning - Bagging Classifier & Random Forest.mp4
    17:04
  • 19. Ensemble Learning - Boosting Adabost and Gradient Boost.mp4
    17:50
  • 20. Emsemble Learning XGBoost.mp4
    09:16
  • 21. Clustering - Kmeans.mp4
    26:15
  • 22. Clustering - Hierarchial Clustering.mp4
    12:29
  • 23. Clustering - DBScan.mp4
    05:52
  • 24. Time Series Analysis.mp4
    12:33
  • 25. ARIMA Hands On.mp4
    11:42
  • 1. Deep Learning Fundaments - Introduction.mp4
    02:31
  • 2. Introduction to Deep Learning.mp4
    13:53
  • 3. Introduction to Tensorflow & Create first Neural Network.mp4
    19:22
  • 4. Intuition of Deep Learning Training.mp4
    15:04
  • 5. Activation Function.mp4
    08:40
  • 6. Architecture of Neural Networks.mp4
    05:40
  • 7. Deep Learning Model Training. - Epochs - Batch Size.mp4
    03:39
  • 8. Hyperparameter Tuning in Deep Learning.mp4
    08:29
  • 9. Vanshing & Exploding Gradients - Initializations, Regularizations.mp4
    07:13
  • 10. Introduction to Convolutional Neural Networks.mp4
    18:02
  • 11. Implementation of CNN on CatDog Dataset.mp4
    15:29
  • 12. Transfer Learning for Computer Vision.mp4
    18:15
  • 13. Feed Forward Neural Network Challenges.mp4
    23:17
  • 14. RNN & Types of Architecture.mp4
    20:53
  • 15. LSTM Architecture.mp4
    09:41
  • 16. Attention Mechanism.mp4
    13:40
  • 17. Transfer Learning for Natural Language Data.mp4
    12:08
  • 1. Introduction to NLP Section.mp4
    02:23
  • 2. Introduction to NLP and NLP Tasks.mp4
    08:44
  • 3. Understanding NLP Pipeline.mp4
    06:33
  • 4. Text Preprocessing Techniques - Tokenization.mp4
    09:45
  • 5. Text Preprocessing - Pos Tagging, Stop words, Stemming & Lemmatization.mp4
    06:54
  • 6. Feature Extraction - NLP.mp4
    02:17
  • 7. One Hot Encoding Technique.mp4
    03:58
  • 8. Bag of Words & Count Vectorizer.mp4
    07:40
  • 9. TF IDF Score.mp4
    07:45
  • 10. Word Embeddings.mp4
    08:30
  • 11. CBoW and Skip gram - word embeddings.mp4
    11:08
  • 1. Introduction to Large Language Models.mp4
    06:43
  • 2. How Large Language Models (LLMs) are trained.mp4
    09:55
  • 3. Capabilities of LLMs.mp4
    03:18
  • 4. Challenges of LLMs.mp4
    06:56
  • 5. Introduction to Transformers - Attention is all you need.mp4
    09:24
  • 6. Positional Encodings.mp4
    08:48
  • 8. Self Attention & Multi Head Attention.mp4
    05:21
  • 9. Self Attention & Multi Head Attention - Deep Dive.mp4
    09:21
  • 10. Understanding Masked Multi Head Attention.mp4
    02:38
  • 11. Masked Multi Head Attention - Deep Dive.mp4
    05:52
  • 12. Encoder Decoder Architecture.mp4
    06:35
  • 13. Customization of LLMs - Prompt Engineering.mp4
    11:15
  • 14. Customization of LLMs - Prompt Learning - Prompt Tuning & p-tuning.mp4
    10:39
  • 15. Difference between Prompt Tuning and p-tuning.mp4
    02:52
  • 16. PEFT - Parameter Efficient Fine Tuning.mp4
    06:54
  • 17. Training data for LLMs.mp4
    08:12
  • 18. Pillars of LLM Training Data Quality, Diversity, and Ethics.mp4
    09:18
  • 19. Data Cleaning for LLMs.mp4
    09:05
  • 20. Biases in Large Language Models.mp4
    07:20
  • 21. Loss Functions for LLMs.mp4
    06:05
  • 1. What is Prompt Engineering .mp4
    07:39
  • 2. Advanced Prompt Engineering.mp4
    02:40
  • 3. Techniques for Effective Prompts.mp4
    04:34
  • 4. Ethical Considerations in Prompt Design for Large Language Models.mp4
    06:02
  • 5. NVIDIAs Tools and Frameworks for Prompt Engineering.mp4
    05:07
  • 6. NVIDIA Ecosystem tools for LLM Model Training.mp4
    04:00
  • 1. Data Visualization & Analysis of LLMs.mp4
    05:21
  • 2. EDA for LLMs.mp4
    05:28
  • 1. Experiment Design Principles for LLMs.mp4
    06:33
  • 2. Techniques for Large Language Models Experimentation.mp4
    05:43
  • 3. Data Management and Version Control for LLM experimentation.mp4
    04:27
  • 4. NVIDIA Ecosystem tools for LLM Experimentation, Data Management and Version Cont.mp4
    05:41
  • 1. LLM Integration and Deployment.mp4
    08:09
  • 2. Deployment Considerations for Large Language Models.mp4
    04:28
  • 3. Monitoring and Maintenance of Large Language Models.mp4
    05:22
  • 4. Explainability and Interpretability of Large Language Models.mp4
    07:02
  • 5. NVIDIA Ecosystem Tools for Deployment and Integration.mp4
    06:38
  • 1. Building Trustworthy AI & NVIDIA Tools.mp4
    07:05
  • 2. Trustworthy AI - Exam Guide.mp4
    01:51:47
  • 1. Exam Tips & Instructions - watch this completely.mp4
    27:33
  • More details


    Course Overview

    This comprehensive course prepares you for the NVIDIA Certified Generative AI Specialist (NCA-GENL) exam, covering machine learning fundamentals to advanced LLM deployment with hands-on GPU acceleration techniques.

    What You'll Learn

    • Core machine learning algorithms and deep learning architectures
    • Transformer models, attention mechanisms, and prompt engineering
    • Ethical AI practices and NVIDIA tools for LLM deployment

    Who This Is For

    • Developers integrating generative AI into applications
    • Data scientists leveraging LLMs for NLP tasks
    • AI professionals pursuing NVIDIA certification

    Key Benefits

    • Hands-on experience with NVIDIA's GPU-accelerated tools
    • Industry-recognized certification preparation
    • End-to-end LLM training to deployment workflow

    Curriculum Highlights

    1. Machine Learning & Deep Learning Foundations
    2. Transformer Architectures & LLM Customization
    3. Prompt Engineering & Ethical Deployment
    Focused display
    • language english
    • Training sessions 95
    • duration 17:54:15
    • Release Date 2025/05/25

    Courses related to Machine Learning

    Courses related to Artificial Intelligence

    Courses related to Neural Networks