Home Search Profile

Master Generative AI with PyTorch: Build GANs Like a Pro

Focused View

13:16:28

  • 1 -Content.mp4
    08:06
  • 1 -Source Codes & Data.zip
  • 2 -Course Information.mp4
    03:34
  • 1 -Definition and Scope.mp4
    07:10
  • 2 -Historical Concepts and Evolution.mp4
    04:04
  • 3 -Applications.mp4
    06:13
  • 4 -Generative Architectural Networks.mp4
    05:48
  • 1 -Basics of Generative Adversarial Network (GAN).mp4
    06:26
  • 2 -Frontend and Backend of Generative Adversarial Network (GAN).mp4
    24:08
  • 1 -Introduction to Google Colab Environment.mp4
    09:10
  • 2 -Basics of Neural Network-Part 1.mp4
    06:17
  • 3 -Basics of Neural Network-Part 2.mp4
    07:17
  • 4 -Basics of Neural Network-Part 3.mp4
    07:09
  • 5 -Basics of Neural Network-Part 4.mp4
    09:03
  • 6 -Basics of Long Short-Term Memory (LSTM)-Part1.mp4
    06:01
  • 7 -Basics of Long Short-Term Memory (LSTM)-Part2.mp4
    12:53
  • 8 -Basics of Convolutional Neural Network-Part1.mp4
    04:57
  • 9 -Basics of Convolutional Neural Network-Part2.mp4
    16:08
  • 10 -Basics of Convolutional Neural Network-Part3.mp4
    07:09
  • 11 -Basics of Convolutional Neural Network-Part4.mp4
    02:34
  • 12 -Basics of Convolutional Neural Network-Part5.mp4
    03:15
  • 13 -Introduction to Tensors-Part1.mp4
    07:00
  • 14 -Introduction to Tensors-Part2.mp4
    16:55
  • 15 -How to Install CUDA and Set GPU (If not using Colab).mp4
    08:18
  • 1 -Data Preprocessing and Preparation-Part1.mp4
    13:23
  • 2 -Data Preprocessing and Preparation-Part2.mp4
    15:02
  • 3 -GenBlock Development.mp4
    15:36
  • 4 -Generator Development.mp4
    17:44
  • 5 -DisBlock Development.mp4
    09:23
  • 6 -Discriminator Development.mp4
    17:31
  • 7 -Models Initialization.mp4
    09:16
  • 8 -Develop Training Loop Data Preparation.mp4
    11:49
  • 9 -Develop Training Loop Train Discriminator.mp4
    19:05
  • 10 -Develop Training Loop Train Generator.mp4
    08:18
  • 11 -Visualization and Image Generation.mp4
    33:32
  • 1 -Synthetic Data Generation Concept.mp4
    10:51
  • 2 -Data Preparation.mp4
    37:40
  • 2 -temperature data.csv
  • 3 -Generator Development.mp4
    23:20
  • 4 -Discriminator Development.mp4
    11:01
  • 5 -Models Initialization.mp4
    12:28
  • 6 -Develop Training Loop Data Preparation.mp4
    12:09
  • 7 -Develop Training Loop Train Discriminator.mp4
    10:23
  • 8 -Develop Training Loop Train Generator.mp4
    08:09
  • 9 -Training Process Evaluation.mp4
    15:10
  • 10 -Generate Synthetic Data.mp4
    24:15
  • 1 -Conditional GANs Concept.mp4
    06:38
  • 2 -Data Preparation Part1.mp4
    26:06
  • 2 -imagelabels.zip
  • 3 -Data Preparation Part2.mp4
    24:47
  • 4 -Data Preparation Part3.mp4
    14:44
  • 5 -Conditional Generator Development.mp4
    25:47
  • 6 -Conditional Discriminator Development.mp4
    16:11
  • 7 -Models Initialization.mp4
    04:32
  • 8 -Develop Training Loop Data Preparation.mp4
    09:44
  • 9 -Develop Training Loop Train Discriminator.mp4
    09:46
  • 10 -Develop Training Loop Train Generator.mp4
    26:27
  • 11 -Generate and Display Image Based on Users Input.mp4
    26:20
  • 1 -Revising Conditional Generator.mp4
    17:27
  • 2 -Revising Conditional Discriminator & Training Loop.mp4
    47:59
  • 3 -Generate and Display Image.mp4
    06:02
  • 1 -Ethics in AI Models and Conclusion.mp4
    08:18
  • More details


    Course Overview

    This hands-on course teaches you to master Generative Adversarial Networks (GANs) using PyTorch, from fundamental concepts to advanced text-to-image generation techniques. Gain practical experience through four real-world projects.

    What You'll Learn

    • Build and train GAN models from scratch using PyTorch
    • Create synthetic data for images and time-series applications
    • Implement advanced techniques like Conditional GANs for text-to-image generation

    Who This Is For

    • Aspiring Data Scientists and ML Engineers
    • Python developers interested in AI
    • Researchers and practitioners in Generative AI

    Key Benefits

    • Hands-on projects with real-world applications
    • Comprehensive neural network foundation included
    • Ethical considerations for responsible AI development

    Curriculum Highlights

    1. GAN Fundamentals & Neural Network Basics
    2. Image Generation with DCGANs
    3. Text-to-Image Conversion with Conditional GANs
    Focused display
    • language english
    • Training sessions 59
    • duration 13:16:28
    • Release Date 2025/06/02