Home Search Profile

Master Google Cloud: Big Data & AI Fundamentals 2024

Focused View

2:24:46

  • 1. Meet the author.mp4
    01:36
  • 2. Course introduction.mp4
    04:06
  • 01. Introduction.mp4
    02:09
  • 02. Google Cloud infrastructure.mp4
    02:18
  • 03. Compute.mp4
    05:38
  • 04. Storage.mp4
    05:43
  • 05. The history of big data and ML products.mp4
    04:20
  • 06. Big data and ML product categories.mp4
    02:32
  • 07. Customer example - Gojek.mp4
    03:58
  • 08. Lab introduction - Exploring a BigQuery Public Datas.mp4
    00:46
  • 10. Summary.mp4
    01:15
  • 01. Introduction.mp4
    02:50
  • 02. Big data challenges.mp4
    02:00
  • 03. Message-oriented architecture.mp4
    04:56
  • 04. Designing streaming pipelines with Apache Beam.mp4
    02:16
  • 05. Implementing streaming pipelines on Cloud Dataflow.mp4
    03:35
  • 06. Visualization with Looker.mp4
    02:58
  • 07. Visualization with Looker Studio.mp4
    01:27
  • 08. Lab introduction - Creating a streaming data pipeline for a Re.mp4
    00:50
  • 10. Summary.mp4
    01:05
  • 01. Introduction.mp4
    05:41
  • 02. Storage and analytics.mp4
    03:50
  • 03. Demo - Querying TB of data in seconds.mp4
    07:05
  • 04. Introduction to BigQuery ML.mp4
    04:24
  • 05. Using BigQuery ML to predict customer lifetime value.mp4
    04:36
  • 06. BigQuery ML project phases.mp4
    02:01
  • 07. BigQuery ML key commands.mp4
    03:25
  • 08. Lab introduction - Predict Visitor Purchases with BigQuery ML.mp4
    00:36
  • 10. Summary.mp4
    01:42
  • 1. Introduction.mp4
    02:29
  • 2. Options to build ML models.mp4
    03:43
  • 3. Pre-built APIs.mp4
    02:12
  • 4. AutoML.mp4
    06:53
  • 5. Custom training.mp4
    01:19
  • 6. Vertex AI.mp4
    03:50
  • 7. AI Solutions.mp4
    02:20
  • 8. Summary.mp4
    02:00
  • 01. Introduction.mp4
    05:45
  • 02. Data preparation.mp4
    03:22
  • 03. Model training.mp4
    03:58
  • 04. Model evaluation.mp4
    04:56
  • 05. Model deployment and monitoring.mp4
    03:44
  • 06. Lab introduction - Predicting loan risk with AutoML.mp4
    00:33
  • 08. Lab recap - Predicting loan risk with AutoML.mp4
    03:04
  • 09. Summary.mp4
    00:43
  • 1. Course summary.mp4
    04:17
  • More details


    Course Overview

    This comprehensive course introduces Google Cloud's big data and machine learning products, guiding you through the complete data-to-AI lifecycle. Learn to build pipelines and ML models with Vertex AI through hands-on labs and real-world examples.

    What You'll Learn

    • Google Cloud infrastructure for big data and ML
    • Designing and implementing streaming data pipelines
    • Building predictive models with BigQuery ML and Vertex AI

    Who This Is For

    • Data engineers exploring cloud solutions
    • ML practitioners transitioning to Google Cloud
    • Tech professionals seeking big data certification

    Key Benefits

    • Hands-on experience with real datasets
    • Learn industry best practices from Google experts
    • Master tools like Dataflow, BigQuery, and Vertex AI

    Curriculum Highlights

    1. Big Data and ML on Google Cloud
    2. Data Engineering for Streaming Data
    3. BigQuery ML and Vertex AI Workflows
    Focused display
    • language english
    • Training sessions 46
    • duration 2:24:46
    • level preliminary
    • English subtitles has
    • Release Date 2025/06/07