Home Search Profile

Master LangChain: Build AI Chat Apps with OpenAI (2024)

Focused View

4:58:20

  • 1 - Introduction to the Course.mp4
    04:53
  • 2 - Business Applications of LangChain.mp4
    05:22
  • 3 - What Makes LangChain Powerful.mp4
    04:32
  • 4 - What Does the Course Cover.mp4
    05:32
  • 5 - Tokens.html
  • 6 - Models and Prices.html
  • 7 - Setting Up a Custom Anaconda Environment for Jupyter Integration.mp4
    03:42
  • 8 - Obtaining an OpenAI API Key.mp4
    02:04
  • 9 - Setting the API Key as an Environment Variable.html
  • Files.zip
  • 10 - First Steps.html
  • 11 - System User and Assistant Roles.html
  • 12 - Creating a Sarcastic Chatbot.html
  • 13 - Temperature Max Tokens and Streaming.html
  • Files.zip
  • 14 - The LangChain Framework.html
  • 15 - ChatOpenAI.mp4
    06:24
  • 16 - System and Human Messages.mp4
    04:29
  • 17 - AI Messages.mp4
    05:07
  • 18 - Prompt Templates and Prompt Values.mp4
    05:22
  • 19 - Chat Prompt Templates and Chat Prompt Values.mp4
    06:06
  • 20 - FewShot Chat Message Prompt Templates.mp4
    06:22
  • 21 - LLMChain.mp4
    02:38
  • Files.zip
  • 22 - Chat Message History.mp4
    06:00
  • 23 - Conversation Buffer Memory Implementing the Setup.mp4
    03:49
  • 24 - Conversation Buffer Memory Configuring the Chain.mp4
    06:37
  • 25 - Conversation Buffer Window Memory.mp4
    04:02
  • 26 - Conversation Summary Memory.mp4
    06:55
  • 27 - Combined Memory.mp4
    05:12
  • Files.zip
  • 28 - String Output Parser.mp4
    02:44
  • 29 - CommaSeparated List Output Parser.mp4
    03:15
  • 30 - Datetime Output Parser.mp4
    02:47
  • Files.zip
  • 31 - Piping a Prompt Model and an Output Parser.mp4
    06:51
  • 32 - Batching.mp4
    04:35
  • 33 - Streaming.mp4
    04:18
  • 34 - The Runnable and RunnableSequence Classes.mp4
    04:52
  • 35 - Piping Chains and the RunnablePassthrough Class.mp4
    07:32
  • 36 - Graphing Runnables.mp4
    02:15
  • 37 - RunnableParallel.mp4
    06:23
  • 38 - Piping a RunnableParallel with Other Runnables.mp4
    05:32
  • 39 - RunnableLambda.mp4
    05:23
  • 40 - The chain Decorator.mp4
    04:21
  • 41 - Adding Memory to a Chain Part 1 Implementing the Setup.mp4
    04:02
  • 42 - RunnablePassthrough with Additional Keys.mp4
    05:24
  • 43 - Itemgetter.mp4
    03:25
  • 44 - Adding Memory to a Chain Part 2 Creating the Chain.mp4
    08:05
  • Files.zip
  • 45 - How to Integrate Custom Data into an LLM.mp4
    04:02
  • 46 - Introduction to RAG.mp4
    03:40
  • 47 - Introduction to Document Loading and Splitting.mp4
    03:56
  • 48 - Introduction to Document Embedding.mp4
    06:46
  • 49 - Introduction to Document Storing Retrieval and Generation.mp4
    03:49
  • 50 - Indexing Document Loading with PyPDFLoader.mp4
    07:10
  • 50 - Introduction-to-Data-and-Data-Science.pdf
  • 51 - Indexing Document Loading with Docx2txtLoader.mp4
    02:25
  • 51 - Introduction-to-Data-and-Data-Science.docx
  • 52 - Indexing Document Splitting with Character Text Splitter Theory.mp4
    02:46
  • 53 - Indexing Document Splitting with Character Text Splitter Code Along.mp4
    05:20
  • 54 - Indexing Document Splitting with Markdown Header Text Splitter.mp4
    05:53
  • 54 - Introduction-to-Data-and-Data-Science-2.docx
  • 55 - Indexing Text Embedding with OpenAI.mp4
    06:00
  • 56 - Indexing Creating a Chroma Vector Store.mp4
    05:42
  • 57 - Indexing Inspecting and Managing Documents in a Vector Store.mp4
    04:22
  • 58 - Retrieval Similarity Search.mp4
    05:29
  • 59 - Retrieval Maximal Marginal Relevance Search.mp4
    06:47
  • 60 - Retrieval Vector StoreBacked Retriever.mp4
    03:30
  • 61 - Generation Stuffing Documents.mp4
    04:22
  • 62 - Generation Generating a Response.mp4
    03:41
  • Files.zip
  • 63 - Introduction to Reasoning Chatbots.mp4
    03:05
  • 64 - Tools Toolkits Agents and Agent Executors.mp4
    06:41
  • 65 - Fixing the GuessedAtParserWarning.html
  • 66 - Creating a Wikipedia Tool and Piping It to a Chain.mp4
    06:03
  • 67 - Creating a Retriever and a Custom Tool.mp4
    05:37
  • 68 - LangChain Hub.mp4
    04:06
  • 69 - Creating a Tool Calling Agent and an Agent Executor.mp4
    05:39
  • 70 - AgentAction and AgentFinish.mp4
    04:37
  • Files.zip
  • More details


    Course Overview

    This comprehensive course teaches you to build cutting-edge AI chat applications using LangChain and OpenAI. Gain hands-on experience integrating large language models into real-world products through practical coding exercises and industry-relevant projects.

    What You'll Learn

    • Master LangChain framework for seamless LLM integration
    • Develop advanced prompt engineering skills for better AI responses
    • Implement Retrieval Augmented Generation (RAG) with custom knowledge bases

    Who This Is For

    • Aspiring AI engineers looking to specialize in LLM applications
    • Developers serious about integrating AI into their products
    • Python programmers wanting to expand into AI engineering

    Key Benefits

    • Acquire rare, in-demand AI engineering skills
    • Learn to leverage OpenAI's powerful language models
    • Build chatbots with memory and advanced conversation capabilities

    Curriculum Highlights

    1. OpenAI API integration and chatbot development
    2. LangChain Expression Language and memory systems
    3. Retrieval Augmented Generation with custom data
    Focused display
    • language english
    • Training sessions 61
    • duration 4:58:20
    • Release Date 2025/06/08