Home Search Profile

Master LangChain & Ollama: Build AI Chatbots & RAG Apps 2025

Focused View

9:22:13

  • 1 - Install Ollama.mp4
    04:59
  • 2 - Touch Base with Ollama.mp4
    05:54
  • 3 - Inspecting LLAMA 32 Model.mp4
    06:28
  • 4 - LLAMA 32 Benchmarking Overview.mp4
    03:47
  • 5 - What Type of Models are Available on Ollama.mp4
    06:36
  • 6 - Ollama Commands ollama server ollama show.mp4
    05:26
  • 7 - Ollama Commands ollama pull ollama list ollama rm.mp4
    05:53
  • 8 - Ollama Commands ollama cp ollama run ollama ps ollama stop.mp4
    06:27
  • 9 - Create and Run Ollama Model with Predefined Settings.mp4
    08:57
  • 10 - Ollama Model Commands show.mp4
    06:19
  • 11 - Ollama Model Commands set clear savemodel and loadmodel.mp4
    09:18
  • 12 - Ollama Raw API Requests.mp4
    08:54
  • 13 - Load Uncesored Models for Banned Content Generation Only Educational Purpose.mp4
    08:48
  • 14 - Langchain Introduction.mp4
    05:50
  • 15 - Lanchain Installation.mp4
    05:57
  • 16 - Langsmith Setup of LLM Observability.mp4
    06:38
  • 17 - Calling Your First Langchain Ollama API.mp4
    06:38
  • 18 - Generating Uncensored Content in Langchain Educational Purpose.mp4
    06:21
  • 19 - Trace LLM Input Output at Langsmith.mp4
    06:23
  • 20 - Going a lot Deeper in the Langchain.mp4
    07:54
  • 21 - Why We Need Prompt Template.mp4
    04:24
  • 22 - Type of Messages Needed for LLM.mp4
    04:32
  • 23 - Circle Back to ChatOllama.mp4
    06:04
  • 24 - Use Langchain Message Types with ChatOllama.mp4
    07:10
  • 25 - Langchain Prompt Templates.mp4
    06:19
  • 26 - Prompt Templates with ChatOllama.mp4
    09:30
  • 27 - Introduction to LCEL.mp4
    06:24
  • 28 - Create Your First LCEL Chain.mp4
    08:49
  • 29 - Adding StrOutputParser with Your Chain.mp4
    07:37
  • 30 - Chaining Runnables Chain Multiple Runnables.mp4
    09:00
  • 31 - Run Chains in Parallel Part 1.mp4
    07:07
  • 32 - Run Chains in Parallel Part 2.mp4
    06:33
  • 33 - How Chain Router Works.mp4
    05:09
  • 34 - Creating Independent Chains for Positive and Negative Reviews.mp4
    07:13
  • 35 - Route Your Answer Generation to Correct Chain.mp4
    07:50
  • 36 - What is RunnableLambda and RunnablePassthrough.mp4
    06:29
  • 37 - Make Your Custom Runnable Chain.mp4
    05:24
  • 38 - Create Custom Chain with chain Decorator.mp4
    03:50
  • 39 - What is Output Parsing.mp4
    05:19
  • 40 - What is Pydantic Parser.mp4
    05:18
  • 41 - Get Pydantic Parser Instruction.mp4
    05:10
  • 42 - Parse LLM Output Using Pydantic Parser.mp4
    07:43
  • 43 - Parsing with withstructuredoutput method.mp4
    04:14
  • 44 - JSON Output Parser.mp4
    04:25
  • 45 - CSV Output Parsing CommaSeparatedListOutputParser.mp4
    06:21
  • 46 - Datetime Output Parsing.mp4
    08:07
  • 47 - How to Save and Load Chat Message History Concept.mp4
    07:08
  • 48 - Simple Chain Setup.mp4
    05:20
  • 49 - Chat Message with History Part 1.mp4
    05:15
  • 50 - Chat Message with History Part 2.mp4
    06:17
  • 51 - Chat Message with History using MessagesPlaceholder.mp4
    08:38
  • 52 - Introduction.mp4
    04:25
  • 53 - Introduction To Streamlit and Our Chat Application.mp4
    04:59
  • 54 - Chat Bot Basic Code Setup.mp4
    04:22
  • 55 - Create Chat History in Streamlit Session State.mp4
    06:17
  • 56 - Create LLM Chat Input Area with Streamlit.mp4
    05:05
  • 57 - Update Historical Chat on Streamlit UI.mp4
    05:37
  • 58 - Complete Your Own Chat Bot Application.mp4
    04:41
  • 59 - Stream Output of Your Chat Bot like ChatGPT.mp4
    06:18
  • 60 - Introduction to PDF Document Loaders.mp4
    07:07
  • 61 - Load Single PDF Document with PyMuPDFLoader.mp4
    05:01
  • 62 - Load All PDFs from a Directory.mp4
    06:12
  • 63 - Combine All PDFs Data as Context Text.mp4
    03:56
  • 64 - How Many Tokens are There in Contex Data.mp4
    05:05
  • 65 - Make Question Answer Prompt Templates and Chain.mp4
    07:19
  • 66 - Ask Questions from Your PDF Documents.mp4
    06:37
  • 67 - Summarize Your PDF Documents.mp4
    03:53
  • 68 - Project 3 Generate Detailed Structured Report from the PDF Documents.mp4
    04:37
  • 69 - Introduction to Webpage Loaders.mp4
    05:51
  • 70 - Load Unstructured Stock Market Data.mp4
    05:27
  • 71 - Make LLM QnA Script.mp4
    04:57
  • 72 - Catastrophic Forgetting of LLM.mp4
    05:01
  • 73 - Break Down Large Text Data Into Chunks.mp4
    04:54
  • 74 - Create Stock Market News Summary for Each Chunks.mp4
    04:58
  • 75 - Generate Final Stock Market Report.mp4
    05:36
  • 76 - Introduction to Unstructured Data Loader.mp4
    06:02
  • 77 - Load PPTX Data with DataLoader.mp4
    06:08
  • 78 - Process PPTX data for LLM.mp4
    06:55
  • 79 - Generate Speaker Script for Your PPTX Presentation.mp4
    06:39
  • 80 - Loading and Parsing Excel Data for LLM.mp4
    04:21
  • 81 - Ask Questions from LLM for given Excel Data.mp4
    03:56
  • 82 - Load DOCX Document and Write Personalized Job Email.mp4
    06:04
  • 83 - Load YouTube Video Subtitles.mp4
    07:33
  • 84 - Load YouTube Video Subtitles in 10 Mins Chunks.mp4
    04:04
  • 85 - Generate YouTube Keywords from the Transcripts.mp4
    07:03
  • 86 - Introduction to RAG Project.mp4
    05:35
  • 87 - Introduction to FAISS and Chroma Vector Database.mp4
    05:46
  • 88 - Load All PDF Documents.mp4
    04:27
  • 89 - Recursive Text Splitter to Create Documents Chunk.mp4
    06:21
  • 90 - How Important Chunk Size Selection is.mp4
    04:31
  • 91 - Get OllamaEmbeddings.mp4
    06:28
  • 92 - Document Indexing in Vector Database.mp4
    06:11
  • 93 - How to Save and Search Vector Database.mp4
    03:48
  • More details


    Course Overview

    This comprehensive course teaches you to build advanced AI applications using LangChain and Ollama, from custom chatbots to document-powered RAG systems with local LLMs.

    What You'll Learn

    • Build and deploy custom chatbots with memory and history
    • Create document-powered AI applications using RAG
    • Master prompt engineering and output parsing techniques

    Who This Is For

    • Developers integrating AI into applications
    • Data scientists building document-powered workflows
    • AI enthusiasts creating local LLM projects

    Key Benefits

    • Hands-on projects with real-world applications
    • Learn to work with local LLMs like LLAMA 3.2
    • Deploy production-ready AI solutions

    Curriculum Highlights

    1. LangChain fundamentals and Ollama setup
    2. Advanced prompt engineering and chaining
    3. Building document-powered RAG applications
    Focused display
    • language english
    • Training sessions 93
    • duration 9:22:13
    • Release Date 2025/04/19