Home Search Profile

Master LLM Apps: Build AI Agents with LangChain & OpenAI

Focused View

3:52:26

  • 01 - Level up LLM applications.mp4
    00:39
  • 02 - What you should know.mp4
    02:48
  • 01 - Setup and installation.mp4
    04:03
  • 02 - Create a chain and interface with LLM.mp4
    04:12
  • 03 - Define and structure a prompt.mp4
    05:19
  • 04 - Create and invoke a chain (LCEL syntax).mp4
    02:54
  • 05 - Work with output parsers.mp4
    02:37
  • 01 - Quickstart Installation and setup.mp4
    02:28
  • 02 - Create embeddings from text (Faiss).mp4
    01:34
  • 03 - Querying the vector store.mp4
    01:56
  • 04 - Querying as a retriever.mp4
    04:59
  • 01 - RAG Overview and architecture.mp4
    02:12
  • 02 - Breaking down the RAG pipeline.mp4
    02:50
  • 03 - Project setup.mp4
    03:33
  • 04 - Load and split documents into chunks.mp4
    05:06
  • 05 - Initialize a vector store (Chroma) and ingest documents.mp4
    05:06
  • 06 - Create the chain Prompt + model + parser.mp4
    05:39
  • 07 - Create the chain Add context with a retriever.mp4
    04:48
  • 08 - Pass data with RunnablePassthrough and query data.mp4
    03:27
  • 09 - Challenge Create a custom agent with history.mp4
    03:12
  • 10 - Solution Add a chain with chat history.mp4
    05:19
  • 11 - Solution Context- and history-aware chatbot.mp4
    05:49
  • 01 - Set up the Streamlit application.mp4
    04:16
  • 02 - Build the layout with Streamlit components.mp4
    05:53
  • 03 - Adding functionality with Streamlit.mp4
    04:50
  • 04 - Challenge Deploy your Streamlit app.mp4
    03:37
  • 05 - Solution Add app to GitHub.mp4
    03:46
  • 06 - Solution Deploy your app.mp4
    05:47
  • 01 - Retrieval with query analysis.mp4
    01:16
  • 02 - Connect to a data source and create an index.mp4
    04:23
  • 03 - Set up query analysis to handle multiple data sources.mp4
    05:55
  • 04 - Retrieval with query analysis.mp4
    05:07
  • 05 - Challenge Retrieval with multiple data sources.mp4
    03:11
  • 06 - Solution Q&A with multiple data sources.mp4
    07:13
  • 01 - Getting started with MongoDB Create an account.mp4
    01:35
  • 02 - Build and deploy a free cluster.mp4
    01:41
  • 03 - Set up the MongoDB environment and connect to the cluster.mp4
    06:23
  • 04 - Create a secured database access (user).mp4
    03:27
  • 05 - Load sample data and create the vector store.mp4
    04:18
  • 06 - Create the Atlas Vector Search index.mp4
    04:04
  • 07 - Run vector search queries.mp4
    05:33
  • 01 - Create a retrieval chain Define the prompt.mp4
    02:51
  • 02 - Create a retrieval chain Define the context.mp4
    05:08
  • 03 - Create a retrieval chain Parse and format results.mp4
    01:47
  • 04 - Query documents and generate extended responses.mp4
    03:33
  • 01 - Using agents to perform actions in chains.mp4
    01:36
  • 02 - Define tools.mp4
    05:37
  • 03 - Select the perfect prompt.mp4
    01:12
  • 04 - Bind tools and create agent.mp4
    02:19
  • 05 - Create and run the agent executor.mp4
    04:41
  • 06 - Challenge Create a multitask agent.mp4
    05:31
  • 07 - Solution Define tools and functions.mp4
    06:09
  • 01 - Introducing LangServe Installation and setup.mp4
    03:35
  • 02 - Create a server.mp4
    00:49
  • 03 - Create the routes and the endpoints.mp4
    05:56
  • 04 - Create a runnable to combine a prompt, a model, and output.mp4
    03:35
  • 05 - Challenge Deploy a RESTful API.mp4
    01:39
  • 06 - Solution Deploy a RESTful API.mp4
    02:51
  • 01 - Manage and deploy an app on Render.mp4
    01:53
  • 02 - Create a GitHub repository and push your project.mp4
    04:21
  • 03 - Deploy a new web service on Render.mp4
    04:10
  • 01 - Conclusion.mp4
    00:28
  • More details


    Course Overview

    Dive into large language model (LLM) application development using LangChain and OpenAI APIs. Learn to build intelligent agents, implement RAG systems, and deploy interactive AI solutions that enhance user experiences through semantic search, Q&A chatbots, and multi-source data handling.

    What You'll Learn

    • Build LLM-powered applications with LangChain
    • Implement retrieval-augmented generation (RAG) pipelines
    • Deploy interactive web apps and RESTful APIs

    Who This Is For

    • Developers looking to integrate LLMs into applications
    • AI enthusiasts wanting practical deployment skills
    • Technical professionals expanding their AI toolkit

    Key Benefits

    • Hands-on experience with OpenAI and vector databases
    • End-to-end project deployment skills
    • Multi-retriever agent development techniques

    Curriculum Highlights

    1. LangChain basics and prompt engineering
    2. Building RAG systems with MongoDB Atlas
    3. Deploying Streamlit apps and REST APIs
    Focused display
    • language english
    • Training sessions 62
    • duration 3:52:26
    • English subtitles has
    • Release Date 2025/06/02