Home Search Profile

Master Machine Learning: Complete 2024 Video Course

Focused View

9:24:15

  • 001. Chapter 1. Introduction Delivering machine learning projects is hard; lets do it better.mp4
    09:10
  • 002. Chapter 1. Why is ML important.mp4
    08:38
  • 003. Chapter 1. Other machine learning methodologies.mp4
    09:00
  • 004. Chapter 1. Understanding this book.mp4
    04:13
  • 005. Chapter 1. Case study The Bike Shop.mp4
    01:48
  • 006. Chapter 1. Summary.mp4
    01:03
  • 007. Chapter 2. Pre-project From opportunity to requirements.mp4
    05:50
  • 008. Chapter 2. Project management infrastructure.mp4
    04:07
  • 009. Chapter 2. Project requirements.mp4
    18:47
  • 010. Chapter 2. Data.mp4
    09:09
  • 011. Chapter 2. Security and privacy.mp4
    03:24
  • 012. Chapter 2. Corporate responsibility, regulation, and ethical considerations.mp4
    12:14
  • 013. Chapter 2. Development architecture and process.mp4
    09:46
  • 014. Chapter 2. Summary.mp4
    01:10
  • 015. Chapter 3. Pre-project From requirements to proposal.mp4
    11:43
  • 016. Chapter 3. Create an estimate.mp4
    23:56
  • 017. Chapter 3. Pre-salespre-project administration.mp4
    02:12
  • 018. Chapter 3. Pre-projectpre-sales checklist.mp4
    01:33
  • 019. Chapter 3. The Bike Shop pre-sales.mp4
    19:20
  • 020. Chapter 3. Pre-project postscript.mp4
    03:02
  • 021. Chapter 3. Summary.mp4
    00:45
  • 022. Chapter 4. Getting started.mp4
    02:48
  • 023. Chapter 4. Finalize team design and resourcing.mp4
    02:22
  • 025. Chapter 4. Infrastructure plan.mp4
    04:49
  • 026. Chapter 4. The data story.mp4
    17:25
  • 027. Chapter 4. Privacy, security, and an ethics plan.mp4
    02:25
  • 028. Chapter 4. Project roadmap.mp4
    03:42
  • 029. Chapter 4. Sprint 0 checklist.mp4
    00:35
  • 030. Chapter 4. Bike Shop project setup.mp4
    17:02
  • 031. Chapter 4. Summary.mp4
    00:58
  • 032. Chapter 5. Diving into the problem.mp4
    01:51
  • 033. Chapter 5. Understanding the data.mp4
    23:20
  • 034. Chapter 5. Business problem refinement, UX, and application design.mp4
    10:23
  • 035. Chapter 5. Building data pipelines.mp4
    22:15
  • 036. Chapter 5. Model repository and model versioning.mp4
    09:03
  • 037. Chapter 5. Summary.mp4
    01:18
  • 038. Chapter 6. EDA, ethics, and baseline evaluations.mp4
    25:17
  • 039. Chapter 6. Ethics checkpoint.mp4
    03:29
  • 040. Chapter 6. Baseline models and performance.mp4
    02:22
  • 041. Chapter 6. What if there are problems.mp4
    04:53
  • 042. Chapter 6. Pre-modeling checklist.mp4
    00:34
  • 043. Chapter 6. The Bike Shop Pre-modelling.mp4
    18:46
  • 045. Chapter 7. Making useful models with ML.mp4
    03:24
  • 046. Chapter 7. Feature engineering and data augmentation.mp4
    12:27
  • 048. Chapter 7. Making models with ML.mp4
    16:16
  • 049. Chapter 7. Stinky, dirty, no good, smelly models.mp4
    04:16
  • 050. Chapter 7. Summary.mp4
    01:00
  • 051. Chapter 8. Testing and selection.mp4
    05:51
  • 052. Chapter 8. Testing processes.mp4
    29:04
  • 053. Chapter 8. Model selection.mp4
    16:53
  • 054. Chapter 8. Post modelling checklist.mp4
    01:36
  • 055. Chapter 8. The Bike Shop sprint 2.mp4
    14:43
  • 056. Chapter 8. Summary.mp4
    02:26
  • 057. Chapter 9. Sprint 3 system building and production.mp4
    04:31
  • 058. Chapter 9. Types of ML implementations.mp4
    20:26
  • 059. Chapter 9. Nonfunctional review.mp4
    01:42
  • 060. Chapter 9. Implementing the production system.mp4
    20:38
  • 061. Chapter 9. Logging, monitoring, management, feedback, and documentation.mp4
    13:48
  • 062. Chapter 9. Pre-release testing.mp4
    03:41
  • 063. Chapter 9. Ethics review.mp4
    02:23
  • 064. Chapter 9. Promotion to production.mp4
    03:00
  • 065. Chapter 9. You arent done yet.mp4
    01:22
  • 066. Chapter 9. The Bike Shop sprint 3.mp4
    10:19
  • 067. Chapter 9. Summary.mp4
    01:33
  • 068. Chapter 10. Post project.mp4
    00:56
  • 069. Chapter 10. Off your hands and into production.mp4
    20:16
  • 070. Chapter 10. Team post-project review.mp4
    04:38
  • 071. Chapter 10. Improving practice.mp4
    04:15
  • 072. Chapter 10. New technology adoption.mp4
    02:06
  • 073. Chapter 10. Case study.mp4
    01:21
  • 074. Chapter 10. Goodbye and good luck.mp4
    01:22
  • 075. Chapter 10. Summary.mp4
    01:35
  • More details


    Course Overview

    Dive into the world of machine learning with this comprehensive video course designed to take you from beginner to proficient practitioner. With over 33,855 seconds of expert-led content, you'll gain hands-on experience with real-world projects.

    What You'll Learn

    • Fundamentals of machine learning algorithms
    • Practical implementation of ML projects
    • Best practices for model training and evaluation

    Who This Is For

    • Aspiring data scientists
    • Software developers expanding their skillset
    • Tech professionals seeking ML expertise

    Key Benefits

    • Project-based learning approach
    • 9+ hours of comprehensive video content
    • Real-world applicable skills

    Curriculum Highlights

    1. Introduction to Machine Learning Concepts
    2. Building Your First ML Model
    3. Advanced Project Implementation
    Focused display
    Category
    • language english
    • Training sessions 72
    • duration 9:24:15
    • Release Date 2025/05/26

    Courses related to Machine Learning