Home Search Profile

Master Pandas 2024: Ultimate Data Analysis with Python

Focused View

18:46:13

  • 1 -Welcome to the Course!.mp4
    04:52
  • 2 - IMPORTANT Example Files (and Exercise Solutions!).html
  • 1 -What Is Programming.mp4
    06:27
  • 1 - Note to Students PLEASE READ.html
  • 2 -The Programming Environment.mp4
    12:28
  • 3 -Values and Types.mp4
    08:18
  • 3 - The Programming Environment - Exercises.html
  • 4 -Functions.mp4
    10:16
  • 5 -Expressions.mp4
    10:03
  • 6 -Expressions in Colab.mp4
    04:47
  • 7 -Variables.mp4
    13:03
  • 7 - Expressions in Colab - Exercises.html
  • 8 -Naming Variables.mp4
    06:18
  • 8 - Variables - Exercises.html
  • 9 -Errors.mp4
    06:54
  • 10 -Comments.mp4
    05:28
  • 11 -Text Cells.mp4
    19:44
  • 12 -Colab Tips and Pitfalls.mp4
    14:14
  • 12 - Text Cells - Exercises.html
  • 13 -Objects, Attributes, and Methods.mp4
    09:06
  • 14 -Modules and Libraries.mp4
    12:14
  • 14 -STEM Salaries.csv
  • 15 -Lists.mp4
    11:57
  • 16 -Tuples.mp4
    09:16
  • 17 -Dictionaries.mp4
    17:03
  • 18 - Data Structures - Exercises.html
  • 1 -Introducing DataFrames.mp4
    10:08
  • 1 - IMPORTANT DOWNLOAD EXAMPLE DATASETS.html
  • 2 -Introducing the Example Datasets.mp4
    02:39
  • 2 - Introducing DataFrames - Exercises.html
  • 3 -DataFrames and the read csv Method - Part I.mp4
    10:46
  • 4 -DataFrames and the read csv Method - Part II.mp4
    04:33
  • 5 -Providing DataFrame Column Names.mp4
    05:49
  • 5 - DataFrames and the read csv Method - Exercises.html
  • 6 -Inspecting DataFrames.mp4
    08:16
  • 6 - Providing DataFrame Column Names - Exercises.html
  • 7 -Data Types and the info Method.mp4
    11:15
  • 7 - Inspecting DataFrames - Exercises.html
  • 8 -Renaming Columns.mp4
    07:10
  • 8 - Data Types and the info Method - Exercises.html
  • 9 -Dropping Columns.mp4
    06:53
  • 9 - Renaming Columns - Exercises.html
  • 10 -Selecting Columns.mp4
    04:24
  • 10 - Dropping Columns - Exercises.html
  • 11 - Selecting Columns - Exercises.html
  • 1 -Series 101.mp4
    09:04
  • 2 -Converting Series with to numeric.mp4
    10:47
  • 2 - Series 101 - Exercises.html
  • 3 -Converting Series with to datetime.mp4
    06:08
  • 3 - Converting Series with to numeric - Exercises.html
  • 4 -Adding Columns (Series) to DataFrames.mp4
    09:54
  • 4 - Converting Series with to datetime - Exercises.html
  • 5 -Creating Derived Columns.mp4
    16:00
  • 5 - Adding Columns (Series) to DataFrames - Exercises.html
  • 6 -The assign Method.mp4
    12:20
  • 6 - Creating Derived Columns - Exercises.html
  • 7 - The assign Method - Exercises.html
  • 1 -The sum Method.mp4
    12:25
  • 2 -The count Method.mp4
    10:12
  • 2 - The sum Method - Exercises.html
  • 3 -Mean and Median.mp4
    12:33
  • 3 - The count Method - Exercises.html
  • 4 -Standard Deviation and the describe Method.mp4
    12:47
  • 4 - Mean and Median - Exercises.html
  • 5 -Using describe on Non-Numeric Fields.mp4
    10:47
  • 5 - Standard Deviation and the describe Method - Exercises.html
  • 6 -The unique and nunique Methods.mp4
    10:31
  • 6 - Using describe on Non-Numeric Fields - Exercises.html
  • 7 -The value counts Method.mp4
    06:43
  • 7 - The unique and nunique Methods - Exercises.html
  • 8 - The value counts Method - Exercises.html
  • 1 -The iloc Method.mp4
    14:10
  • 2 -Indexing Basics.mp4
    13:51
  • 2 - The iloc Method - Exercises.html
  • 3 -The loc Method.mp4
    06:44
  • 3 - Indexing Basics - Exercises.html
  • 4 -Sorting by Index.mp4
    11:19
  • 4 - The loc Method - Exercises.html
  • 5 -Sorting By Columns.mp4
    15:51
  • 5 - Sorting by Index - Exercises.html
  • 6 -Dropping Rows By Index.mp4
    09:21
  • 6 - Sorting By Columns - Exercises.html
  • 7 - Dropping Rows By Index - Exercises.html
  • 1 -Filtering DataFrames with a Boolean Series.mp4
    11:33
  • 2 -Applying Other Logical Conditions.mp4
    11:07
  • 2 - Filtering DataFrames with a Boolean Series - Exercises.html
  • 3 -The between and isin Methods.mp4
    11:15
  • 3 - Applying Other Logical Conditions - Exercises.html
  • 4 -Combining Conditions Using the & Operator.mp4
    17:58
  • 4 - The between and isin Methods - Exercises.html
  • 5 -Combining Conditions Using the Operator.mp4
    06:03
  • 5 - Combining Conditions Using the & Operator - Exercises.html
  • 6 -Combining And & Or Logic.mp4
    18:18
  • 6 - Combining Conditions Using the Operator - Exercises.html
  • 7 -Negation.mp4
    11:15
  • 7 - Combining And & Or Logic - Exercises.html
  • 8 -The isna Method.mp4
    15:49
  • 8 - Negation - Exercises.html
  • 9 - The isna Method - Exercises.html
  • 1 -Updating DataFrame Values with loc.mp4
    09:17
  • 2 -Replacing DataFrame Values.mp4
    09:45
  • 2 - Updating DataFrame Values with loc - Exercises.html
  • 3 -Updating Values with Boolean Masks.mp4
    15:55
  • 3 - Replacing DataFrame Values - Exercises.html
  • 4 -Removing Null Values.mp4
    14:06
  • 4 - Updating Values with Boolean Masks - Exercises.html
  • 5 -Replacing Null Values.mp4
    09:02
  • 5 - Removing Null Values - Exercises.html
  • 6 -Identifying Duplicate Data.mp4
    09:32
  • 6 - Replacing Null Values - Exercises.html
  • 7 -Removing Duplicate Data.mp4
    10:46
  • 8 - Identifying and Removing Duplicate Data - Exercises.html
  • 1 -Stacking Datasets Vertically I.mp4
    10:47
  • 2 -Orders 2021.csv
  • 2 -Orders 2022.csv
  • 2 -Orders 2023.csv
  • 2 -Stacking Datasets Vertically II.mp4
    08:38
  • 3 -Fetching Excel Data Into Pandas.mp4
    10:01
  • 3 -Orders.xlsx
  • 3 -Order Details 2021.csv
  • 3 -Order Details 2022.csv
  • 3 -Order Details 2023.csv
  • 3 - Stacking Datasets Vertically - Exercises.html
  • 4 -Customers.csv
  • 4 -Joining DataFrames Horizontally I.mp4
    10:10
  • 4 -Orders 2021.csv
  • 4 -Order Details.xlsx
  • 4 - Fetching Excel Data Into Pandas - Exercises.html
  • 5 -Joining DataFrames Horizontally II.mp4
    08:44
  • 6 -Customers.csv
  • 6 -Left and Right Joins.mp4
    12:40
  • 6 -Orders 2021.csv
  • 6 -Order Details 2021.csv
  • 6 -Products.csv
  • 6 - Joining DataFrames Horizontally - Exercises.html
  • 7 -Full Outer Joins.mp4
    07:41
  • 8 -Combining More Than Two Tables.mp4
    10:58
  • 8 -Customers.csv
  • 8 -Orders 2021.csv
  • 8 -Order Details 2021.csv
  • 8 -Order Details 2022.csv
  • 8 -Order Details 2023.csv
  • 8 -Products.csv
  • 8 - Outer Joins - Exercises.html
  • 9 -Customers.csv
  • 9 -Orders 2022.csv
  • 9 -Order Details 2022.csv
  • 9 -Products.csv
  • 9 - Combining More Than Two Tables - Exercises.html
  • 1 -Grouping and Aggregation 101.mp4
    14:55
  • 2 -Applying Multiple Aggregations.mp4
    14:09
  • 2 - Grouping and Aggregation 101 - Exercises.html
  • 3 -Grouping By Multiple Columns.mp4
    08:49
  • 3 - Applying Multiple Aggregations - Exercises.html
  • 4 -The transform Method.mp4
    14:35
  • 4 - Grouping By Multiple Columns - Exercises.html
  • 5 -Pythonic Pivot Tables.mp4
    14:37
  • 5 - The transform Method - Exercises.html
  • 6 - Pythonic Pivot Tables - Exercises.html
  • 1 -upper, lower, and capitalize.mp4
    07:44
  • 2 -The len Method.mp4
    04:16
  • 2 - upper, lower, and capitalize - Exercises.html
  • 3 -Regular Expressions 101.mp4
    15:03
  • 3 - The len Method - Exercises.html
  • 4 -Matching Digits with Regular Expressions.mp4
    06:49
  • 4 - Regular Expressions 101 - Exercise.html
  • 5 -The contains Method.mp4
    14:06
  • 5 - Matching Digits with Regular Expressions - Exercises.html
  • 6 -The replace Method I.mp4
    08:21
  • 6 - The contains Method - Exercises.html
  • 7 -The replace Method II.mp4
    08:32
  • 8 - The replace Method - Exercises.html
  • 1 -Using Datetime Values as Criteria.mp4
    14:39
  • 2 -The datetime Module I.mp4
    10:06
  • 2 - Using Datetime Values as Criteria - Exercises.html
  • 3 -The datetime Module II.mp4
    08:29
  • 4 -Date Math in Pandas.mp4
    14:44
  • 4 - The datetime Module - Exercises.html
  • 5 -The shift Method I.mp4
    12:20
  • 5 - Date Math in Pandas - Exercises.html
  • 6 -The shift Method II.mp4
    09:45
  • 7 -Calculating rolling Averages.mp4
    13:42
  • 7 - The shift Method - Exercises.html
  • 8 - Calculating rolling Averages - Exercises.html
  • 1 -Data Visualization 101.1.mp4
    13:11
  • 2 -Data Visualization 101.2.mp4
    05:27
  • 3 -Bar Plots.mp4
    12:00
  • 3 - Data Visualization - Exercises.html
  • 4 -Scatter Plots.mp4
    16:09
  • 4 - Bar Plots - Exercises.html
  • 5 -Customizing Plot Appearance.mp4
    07:19
  • 5 - Scatter Plots - Exercises.html
  • 6 -Customizing Plot Axes.mp4
    14:15
  • 7 - Customizing Plots - Exercises.html
  • 1 -Apply-ing Functions to Data Analysis.mp4
    04:38
  • 2 -If Statements in Python.mp4
    10:35
  • 3 -Incorporating Multiple Logical Conditions.mp4
    11:19
  • 4 -Incorporating And and Or Logic.mp4
    13:22
  • 5 -Functions in Python.mp4
    10:04
  • 5 - If Statements - Exercises.html
  • 6 -Returning Values From Functions I.mp4
    08:27
  • 7 -Returning Values From Functions II.mp4
    08:26
  • 8 - Functions - Exercises.html
  • 1 -The map Method.mp4
    09:49
  • 2 -Using map with Custom Functions I.mp4
    09:27
  • 2 - The map Method - Exercises.html
  • 3 -Using map with Custom Functions II.mp4
    10:41
  • 4 -The apply Method.mp4
    10:07
  • 4 - Using map with Custom Functions - Exercises.html
  • 5 -Applying apply to Multiple Columns.mp4
    08:08
  • 5 - The apply Method - Exercises.html
  • 6 - Applying apply to Multiple Columns - Exercises.html
  • 1 - BONUS LESSON.html
  • More details


    Course Overview

    Transform from beginner to expert Data Analyst with this comprehensive Pandas bootcamp. Master Python data analysis through 200+ hands-on exercises and real-world datasets.

    What You'll Learn

    • Manipulate complex datasets using Pandas' powerful tools
    • Clean, merge, and analyze data like a professional
    • Create insightful visualizations and time series analysis

    Who This Is For

    • Excel/SQL users scaling up their data skills
    • Aspiring data analysts transitioning to Python
    • Business professionals leveraging data for decisions

    Key Benefits

    • No prior programming experience required
    • Practical skills with real-world datasets
    • Complete toolkit from basics to advanced analysis

    Curriculum Highlights

    1. Python fundamentals & DataFrame mastery
    2. Data cleaning, filtering, and advanced analysis
    3. Time series, visualization, and professional workflows
    Focused display
    • language english
    • Training sessions 107
    • duration 18:46:13
    • Release Date 2025/06/03