Home Search Profile

Ultimate Azure Data Engineering: DP-203 Certification Pro

Focused View

9:25:15

  • 001 - Introduction.mp4
    05:20
  • 002 - Learning objectives.mp4
    00:24
  • 003 - Design an Azure Data Lake solution.mp4
    03:59
  • 004 - Recommend file types for storage.mp4
    01:56
  • 005 - Recommend file types for analytical queries.mp4
    01:01
  • 006 - Design for efficient querying.mp4
    15:47
  • 007 - Learning objectives.mp4
    00:24
  • 008 - Design a folder structure that represents levels of data transformation.mp4
    02:32
  • 009 - Design a distribution strategy.mp4
    02:56
  • 010 - Design a data archiving solution.mp4
    20:41
  • 011 - Learning objectives.mp4
    00:36
  • 012 - Design a partition strategy for files.mp4
    03:58
  • 013 - Design a partition strategy for analytical workloads.mp4
    01:57
  • 014 - Design a partition strategy for efficiency and performance.mp4
    02:56
  • 015 - Design a partition strategy for Azure Synapse Analytics.mp4
    02:02
  • 016 - Identify when partitioning is needed in Azure Data Lake Storage Gen2.mp4
    23:46
  • 017 - Learning objectives.mp4
    00:40
  • 018 - Design star schemas.mp4
    03:13
  • 019 - Design slowly changing dimensions.mp4
    02:23
  • 020 - Design a dimensional hierarchy.mp4
    00:28
  • 021 - Design a solution for temporal data.mp4
    01:16
  • 022 - Design for incremental loading.mp4
    00:51
  • 023 - Design analytical stores.mp4
    02:18
  • 024 - Design metastores in Azure Synapse Analytics and Azure Databricks.mp4
    24:10
  • 025 - Learning objectives.mp4
    00:29
  • 026 - Implement compression.mp4
    01:42
  • 027 - Implement partitioning.mp4
    00:42
  • 028 - Implement sharding.mp4
    00:18
  • 029 - Implement different table geometries with Azure Synapse Analytics pools.mp4
    02:03
  • 030 - Implement data redundancy.mp4
    03:55
  • 031 - Implement distributions.mp4
    00:27
  • 032 - Implement data archiving.mp4
    13:19
  • 033 - Learning objectives.mp4
    00:30
  • 034 - Build a temporal data solution.mp4
    00:49
  • 035 - Build a slowly changing dimension.mp4
    00:53
  • 036 - Build a logical folder structure.mp4
    01:03
  • 037 - Build external tables.mp4
    02:31
  • 038 - Implement file and folder structures for efficient querying and data pruning.mp4
    10:00
  • 039 - Learning objectives.mp4
    00:30
  • 040 - Deliver data in a relational star schema.mp4
    01:34
  • 041 - Deliver data in Parquet files.mp4
    00:46
  • 042 - Maintain metadata.mp4
    00:33
  • 043 - Implement a dimensional hierarchy.mp4
    12:43
  • 044 - Learning objectives.mp4
    00:31
  • 045 - Transform data by using Apache Spark.mp4
    02:29
  • 046 - Transform data by using Transact-SQL.mp4
    01:05
  • 047 - Transform data by using Data Factory.mp4
    01:35
  • 048 - Transform data by using Azure Synapse pipelines.mp4
    01:24
  • 049 - Transform data by using Stream Analytics.mp4
    19:50
  • 050 - Learning objectives.mp4
    00:32
  • 051 - Cleanse data.mp4
    02:39
  • 052 - Split data.mp4
    01:40
  • 053 - Shred JSON.mp4
    02:03
  • 054 - Encode and decode data.mp4
    09:35
  • 055 - Learning objectives.mp4
    00:33
  • 056 - Configure error handling for the transformation.mp4
    01:38
  • 057 - Normalize and denormalize values.mp4
    02:19
  • 058 - Transform data by using Scala.mp4
    01:22
  • 059 - Perform data exploratory analysis.mp4
    13:15
  • 060 - Learning objectives.mp4
    00:46
  • 061 - Develop batch processing solutions by using Data Factory, Data Lake, Spark, Azure Syn.mp4
    01:14
  • 062 - Create data pipelines.mp4
    02:00
  • 063 - Design and implement incremental data loads.mp4
    01:20
  • 064 - Design and develop slowly changing dimensions.mp4
    00:36
  • 065 - Handle security and compliance requirements.mp4
    02:35
  • 066 - Scale resources.mp4
    21:11
  • 067 - Learning objectives.mp4
    00:37
  • 068 - Configure the batch size.mp4
    02:26
  • 069 - Design and create tests for data pipelines.mp4
    03:31
  • 070 - Integrate Jupyter and Python Notebooks into a data pipeline.mp4
    01:15
  • 071 - Handle duplicate data.mp4
    00:23
  • 072 - Handle missing data.mp4
    00:36
  • 073 - Handle late-arriving data.mp4
    07:39
  • 074 - Learning objectives.mp4
    00:39
  • 075 - Upsert data.mp4
    01:52
  • 076 - Regress to a previous state.mp4
    02:14
  • 077 - Design and configure exception handling.mp4
    01:44
  • 078 - Configure batch retention.mp4
    01:02
  • 079 - Revisit batch processing solution design.mp4
    01:16
  • 080 - Debug Spark jobs by using the Spark UI.mp4
    24:55
  • 081 - Learning objective.mp4
    00:46
  • 082 - Develop a stream processing solution by using Stream Analytics, Azure Databricks, and.mp4
    01:53
  • 083 - Process data by using Spark structured streaming.mp4
    01:52
  • 084 - Monitor for performance and functional regressions.mp4
    01:34
  • 085 - Design and create windowed aggregates.mp4
    01:50
  • 086 - Handle schema drift.mp4
    21:50
  • 087 - Learning objectives.mp4
    00:47
  • 088 - Process time series data.mp4
    01:53
  • 089 - Process across partitions.mp4
    02:09
  • 090 - Process within one partition.mp4
    01:00
  • 091 - Configure checkpoints and watermarking during processing.mp4
    01:02
  • 092 - Scale resources.mp4
    01:49
  • 093 - Design and create tests for data pipelines.mp4
    01:20
  • 094 - Optimize pipelines for analytical or transactional purposes.mp4
    15:26
  • 095 - Learning objectives.mp4
    00:28
  • 096 - Handle interruptions.mp4
    01:41
  • 097 - Design and configure exception handling.mp4
    00:41
  • 098 - Upsert data.mp4
    01:25
  • 099 - Replay archived stream data.mp4
    01:49
  • 100 - Design a stream processing solution.mp4
    09:53
  • 101 - Learning objectives.mp4
    00:34
  • 102 - Trigger batches.mp4
    01:53
  • 103 - Handle failed batch loads.mp4
    01:50
  • 104 - Validate batch loads.mp4
    00:45
  • 105 - Manage data pipelines in Data Factory and Synapse pipelines.mp4
    01:16
  • 106 - Schedule data pipelines in Data Factory and Synapse pipelines.mp4
    00:22
  • 107 - Implement version control for pipeline artifacts.mp4
    00:56
  • 108 - Manage Spark jobs in a pipeline.mp4
    12:01
  • 109 - Learning objectives.mp4
    00:26
  • 110 - Design data encryption for data at rest and in transit.mp4
    01:57
  • 111 - Design a data auditing strategy.mp4
    00:36
  • 112 - Design a data masking strategy.mp4
    01:17
  • 113 - Design for data privacy.mp4
    11:40
  • 114 - Learning objectives.mp4
    00:37
  • 115 - Design a data retention policy.mp4
    01:22
  • 116 - Design to purge data based on business requirements.mp4
    01:06
  • 117 - Design Azure RBAC and POSIX-like ACL for Data Lake Storage Gen2.mp4
    01:37
  • 118 - Design row-level and column-level security.mp4
    14:33
  • 119 - Learning objectives.mp4
    00:40
  • 120 - Implement data masking.mp4
    01:49
  • 121 - Encrypt data at rest and in motion.mp4
    01:40
  • 122 - Implement row-level and column-level security.mp4
    00:18
  • 123 - Implement Azure RBAC.mp4
    01:31
  • 124 - Implement POSIX-like ACLs for Data Lake Storage Gen2.mp4
    00:54
  • 125 - Implement a data retention policy.mp4
    00:21
  • 126 - Implement a data auditing strategy.mp4
    15:28
  • 127 - Learning objectives.mp4
    00:40
  • 128 - Manage identities, keys, and secrets across different data platforms.mp4
    02:20
  • 129 - Implement secure endpoints Private and public.mp4
    01:38
  • 130 - Implement resource tokens in Azure Databricks.mp4
    01:34
  • 131 - Load a DataFrame with sensitive information.mp4
    00:54
  • 132 - Write encrypted data to tables or Parquet files.mp4
    00:34
  • 133 - Manage sensitive information.mp4
    16:51
  • 134 - Learning objectives.mp4
    00:30
  • 135 - Implement logging used by Azure Monitor.mp4
    01:09
  • 136 - Configure monitoring services.mp4
    01:15
  • 137 - Measure performance of data movement.mp4
    00:57
  • 138 - Monitor and update statistics about data across a system.mp4
    01:12
  • 139 - Monitor data pipeline performance.mp4
    00:13
  • 140 - Measure query performance.mp4
    10:15
  • 141 - Learning objectives.mp4
    00:34
  • 142 - Monitor cluster performance.mp4
    01:32
  • 143 - Understand custom logging options.mp4
    01:34
  • 144 - Schedule and monitor pipeline tests.mp4
    01:58
  • 145 - Interpret Azure Monitor metrics and logs.mp4
    01:21
  • 146 - Interpret a Spark Directed Acyclic Graph (DAG).mp4
    16:44
  • 147 - Learning objectives.mp4
    00:32
  • 148 - Compact small files.mp4
    01:09
  • 149 - Rewrite user-defined functions (UDFs).mp4
    01:26
  • 150 - Handle skew in data.mp4
    01:50
  • 151 - Handle data spill.mp4
    01:29
  • 152 - Tune shuffle partitions.mp4
    01:07
  • 153 - Find shuffling in a pipeline.mp4
    00:21
  • 154 - Optimize resource management.mp4
    12:00
  • 155 - Learning objectives.mp4
    00:31
  • 156 - Tune queries by using indexers.mp4
    01:53
  • 157 - Tune queries by using cache.mp4
    00:55
  • 158 - Optimize pipelines for analytical or transactional purposes.mp4
    01:38
  • 159 - Optimize pipeline for descriptive versus analytical workloads.mp4
    01:28
  • 160 - Troubleshoot failed Spark jobs.mp4
    00:30
  • 161 - Troubleshoot failed pipeline runs.mp4
    01:14
  • 162 - Summary.mp4
    02:08
  • More details


    Course Overview

    Master data engineering on Microsoft Azure with this comprehensive DP-203 certification prep course. Learn to design robust data processing solutions, optimize storage strategies, and manage massive datasets using Azure Synapse Analytics from Microsoft MVP Tim Warner.

    What You'll Learn

    • Design and implement efficient Azure data storage solutions
    • Optimize performance with data compression, partitioning, and sharding
    • Ensure data accessibility and protection through redundancy and archival

    Who This Is For

    • IT professionals pursuing Azure Data Engineer certification
    • Data scientists building scalable cloud solutions
    • Developers working with data-driven applications

    Key Benefits

    • Covers all DP-203 exam objectives in a logical progression
    • Learn from Microsoft MVP with real-world Azure expertise
    • Build skills for designing high-performance data solutions

    Curriculum Highlights

    1. Azure data storage strategies and optimization
    2. Managing datasets with Azure Synapse Analytics
    3. Data security, redundancy, and performance tuning
    Focused display
    • language english
    • Training sessions 162
    • duration 9:25:15
    • English subtitles has
    • Release Date 2025/05/22