Home Search Profile

Complete Data Science Bootcamp 2024: Python to Azure ML

Focused View

8:49:09

  • 1 -Introduction.mp4
    02:11
  • 2 -The Data Scientist Role.mp4
    06:54
  • 1 -Setting Up Your Python Environment with Anaconda and Jupyter Notebook.mp4
    04:50
  • 2 -Jupyter Notebook Overview.mp4
    08:03
  • 3 -Notebooks.zip
  • 3 -Understanding Variables in Python.mp4
    09:02
  • 3 - Download All Notebooks Here.html
  • 4 -Data Types and Their Importance.mp4
    03:47
  • 5 -Working with Lists.mp4
    03:03
  • 6 -Exploring Dictionaries.mp4
    04:12
  • 7 -Tuples and Sets.mp4
    05:42
  • 8 -Introduction to Arithmetic and Comparison Operators.mp4
    04:35
  • 9 -Conditional Statements in Python.mp4
    06:27
  • 10 -Using For Loops.mp4
    04:28
  • 11 -Combining For Loops with Conditional Statements.mp4
    08:11
  • 12 -Defining Functions in Python.mp4
    09:21
  • 13 -Test your Knowledge Python Basics Q & A.mp4
    10:23
  • 1 -Descriptive Statistics Mean, Median, and Mode Explained.mp4
    05:24
  • 2 -Measuring Spread Standard Deviation and Variance.mp4
    03:30
  • 3 -Understanding Sampling Techniques in Data Science.mp4
    09:29
  • 4 -Understanding Variables.mp4
    05:20
  • 5 -Frequency Distribution Organizing Data for Insights.mp4
    03:38
  • 1 -DataScience salaries 2024.csv
  • 1 -Reading CSV Files with Pandas.mp4
    06:34
  • 1 -titanic.csv
  • 2 -Using Describe to Summarize Data.mp4
    08:02
  • 3 -Algebraic Operations in Pandas.mp4
    06:51
  • 4 -Renaming Columns.mp4
    06:27
  • 5 -Handling Missing Values.mp4
    11:55
  • 6 -Counting Values Understanding Data Distribution.mp4
    04:39
  • 7 -Grouping Data Aggregating Insights.mp4
    06:25
  • 8 -Filtering Data in Pandas.mp4
    09:33
  • 9 -Applying Functions to Data.mp4
    08:38
  • 10 -Converting Dates in Pandas.mp4
    08:33
  • 10 -web sales.zip
  • 11 -Plotting Data with Pandas.mp4
    05:51
  • 12 -Test your Knowledge Pandas Q & A.mp4
    08:40
  • 1 -Introduction Signing Up for ChatGPT.mp4
    04:00
  • 2 -Assigning a Role for ChatGPT.mp4
    04:11
  • 3 -Crafting Effective Instructions for ChatGPT.mp4
    04:17
  • 4 -Enhancing Responses by Providing Context.mp4
    06:05
  • 5 -Improving Responses with Few-Shot Examples.mp4
    07:21
  • 6 -Limitations and Considerations When Using ChatGPT.mp4
    02:21
  • 7 -Practical Data Analysis with ChatGPT (Part 1).mp4
    10:58
  • 8 -Practical Data Analysis with ChatGPT (Part 2).mp4
    05:19
  • 1 -Introduction to Line Plots.mp4
    11:51
  • 2 -Creating Histograms.mp4
    08:11
  • 3 -Customizing Plot Size (Figsize).mp4
    02:37
  • 4 -Formatting Your Plots.mp4
    06:31
  • 5 -Correlation Explained.mp4
    04:05
  • 6 -2018-2019 Happiness.csv
  • 6 -Building Basic Scatter Plots.mp4
    08:13
  • 7 -Creating Subplots.mp4
    10:06
  • 8 -Box Plots for Data Spread and Outliers.mp4
    05:41
  • 9 -Using Violin Plots for Distribution.mp4
    02:44
  • 10 -Visualizing Categorical Data with Bar Plots.mp4
    04:58
  • 11 -Advanced Scatter Plots with Seaborn.mp4
    05:41
  • 12 -Correlation Heatmaps.mp4
    09:09
  • 13 -Using Pair Plots for Multi-Variable Relationships.mp4
    08:04
  • 1 -Understanding the Machine Learning Lifecycle.mp4
    06:15
  • 2 -Supervised and Unsupervised Learning.mp4
    04:42
  • 3 -Supervised Learning Explained.mp4
    05:27
  • 4 -Unsupervised Learning Explained.mp4
    05:11
  • 5 -Practical Example of Linear Regression in Python - Part 1.mp4
    09:18
  • 5 -house data.csv
  • 6 -Practical Example of Linear Regression in Python - Part 2.mp4
    13:41
  • 1 -Data Import and Initial Analysis.mp4
    08:46
  • 1 -housing.csv
  • 2 -Preparing Categorical Data with One-Hot Encoding.mp4
    08:07
  • 3 -Mapping Geographic Data with Longitude and Latitude.mp4
    03:09
  • 4 -Scaling Data with Log Transformation.mp4
    05:14
  • 5 -Feature Engineering.mp4
    01:45
  • 6 -Understanding Multicollinearity.mp4
    02:45
  • 7 -Detecting Multicollinearity with a Heatmap.mp4
    08:27
  • 8 -Training the Regression Model.mp4
    05:29
  • 9 -Evaluating Model Performance with R-Squared.mp4
    07:47
  • 10 -Understanding Mean Squared Error (MSE).mp4
    04:21
  • 11 -Introduction to Random Forests.mp4
    04:41
  • 12 -Applying Random Forest to the Housing Project.mp4
    04:56
  • 13 -Exploring Feature Importance in Random Forests.mp4
    06:35
  • 1 -Introduction to Hypothesis Testing.mp4
    03:08
  • 2 -Understanding Null and Alternative Hypotheses.mp4
    02:56
  • 3 -Exploring t-Tests and z-Tests.mp4
    02:24
  • 4 -Understanding the P-Value.mp4
    02:53
  • 5 -Practical Example of Hypothesis Testing with Python.mp4
    06:01
  • 1 -Signing Up and Getting Started with Azure.mp4
    02:37
  • 2 -Optimizing and Managing Azure Costs.mp4
    03:38
  • 3 -Setting Up Your Workspace and Compute Environment.mp4
    04:48
  • 4 -Creating and Importing Data Assets.mp4
    06:35
  • 4 -Loan.csv
  • 5 -Design the Model in Azure Machine Learning Designer.mp4
    14:15
  • 6 -Interpreting the Confusion Matrix for Model Evaluation.mp4
    02:18
  • 7 -Measuring Model Accuracy and AUC.mp4
    04:00
  • 8 -Evaluating Model Precision, Recall, and F1 Score.mp4
    06:32
  • 9 -Final Model Evaluation and Insights.mp4
    07:27
  • More details


    Course Overview

    This hands-on bootcamp teaches complete beginners practical data science skills using Python, Tableau, and Azure ML, with real-world projects to build your portfolio.

    What You'll Learn

    • Master Python for data analysis and visualization
    • Build and deploy ML models with Azure Machine Learning
    • Create interactive dashboards in Tableau

    Who This Is For

    • Absolute beginners with no coding experience
    • Career changers entering data science
    • Professionals adding data skills to their toolkit

    Key Benefits

    • No prerequisites - start from absolute basics
    • Hands-on projects with real datasets
    • Cloud computing experience with Azure ML

    Curriculum Highlights

    1. Python fundamentals for data science
    2. Statistical analysis and visualization
    3. Machine learning and cloud deployment
    Focused display
    • language english
    • Training sessions 86
    • duration 8:49:09
    • Release Date 2025/04/19