Home Search Profile

Ultimate Data Science & ML Integration: SQL-Python-Tableau Pro

Focused View

4:16:20

  • 1 -Introduction.mp4
    04:43
  • 2 -Data Connectivity, APIs, and Endpoints.mp4
    07:05
  • 3 -API.mp4
    08:05
  • 4 -4. Exchanging Information using Text Files.mp4
    04:20
  • 5 -Software Integration.mp4
    05:25
  • 1 -What's next in the course.mp4
    04:08
  • 2 -Defining the Task - Absenteeism at Work.mp4
    02:48
  • 3 -3. The Data Set.mp4
    03:18
  • 1 -Importing the Data Set in Python.mp4
    03:23
  • 2 -Eyeballing the Data.mp4
    05:53
  • 3 -Introduction to Terms with Multiple Meanings.mp4
    03:27
  • 4 -An Analytical Approach to Solving the Task.mp4
    02:17
  • 5 -Dropping the 'ID' Column.mp4
    06:27
  • 6 -Analysis of the 'Reason for Absence' Column.mp4
    05:04
  • 7 -Converting a Feature into Multiple Dummy Variables.mp4
    08:37
  • 8 -Working with Dummy Variables from a Statistical Perspective.mp4
    01:28
  • 9 -Grouping the Various Reasons for Absence.mp4
    08:35
  • 10 -Concatenating Column Values.mp4
    04:35
  • 11 -Reordering Columns.mp4
    01:43
  • 12 -Creating Checkpoints in Jupyter.mp4
    02:52
  • 13 -Working on the 'Date' Column.mp4
    07:48
  • 14 -Extracting the Month Value.mp4
    07:00
  • 15 -Creating the 'Day of the Week' Column.mp4
    03:36
  • 16 -Analyzing the Next 5 Columns in our DataFrame.mp4
    03:17
  • 17 -Modifying 'Education' and discussing 'Children' and 'Pets'.mp4
    04:38
  • 18 -Final Remarks on the Data Preprocessing Part of the Exercise.mp4
    01:59
  • 1 -Exploring the Problem from a Machine Learning Point of View.mp4
    03:20
  • 2 -Creating the Targets for the Regression.mp4
    06:32
  • 3 -Selecting the Inputs for the Regression.mp4
    02:41
  • 4 -Standardizing the Dataset for Better Results.mp4
    03:26
  • 5 -Train-Test Split.mp4
    06:12
  • 6 -Training and evaluating the model.mp4
    05:39
  • 7 -Extracting the Intercept and Coefficients.mp4
    05:16
  • 8 -Interpreting the Coefficients.mp4
    06:14
  • 9 -Creating a Custom Scaler to Standardize Only Numerical Features.mp4
    04:12
  • 10 -Interpreting the (Important) Coefficients.mp4
    05:10
  • 11 -Simplifying the Model (Backward Elimination).mp4
    04:02
  • 12 -Testing the Logistic Regression Model.mp4
    04:43
  • 13 -Saving the Logistic Regression Model.mp4
    04:06
  • 14 -Creating a module for later use of the model.mp4
    04:04
  • 1 -Loading the 'absenteeism_module'.mp4
    03:50
  • 2 -Working with the 'absenteeism_module'.mp4
    06:23
  • 3 -Creating a Database Structure in MySQL.mp4
    06:12
  • 4 -Installing and Importing 'pymysql'.mp4
    02:44
  • 5 -Setting up a Connection and Creating a Cursor.mp4
    02:54
  • 6 -Creating the 'predicted_outputs' table in MySQL.mp4
    04:52
  • 7 -Executing an SQL Query from Python.mp4
    03:04
  • 8 -Moving Data from Python to SQL - Part I.mp4
    06:15
  • 9 -Moving Data from Python to SQL - Part II.mp4
    06:35
  • 10 -Moving Data from Python to SQL - Part III.mp4
    02:45
  • 1 -Tableau Analysis - Age vs Probability.mp4
    08:49
  • 2 -Tableau Analysis - Reasons vs Probability.mp4
    07:49
  • 3 -Tableau Analysis - Transportation Expense vs Probability.mp4
    06:00
  • More details


    Course Overview

    Master data science integration techniques using SQL, Python, and Tableau in this comprehensive course. Learn to preprocess data, apply machine learning models, and analyze results for real-world business solutions like absenteeism prediction.

    What You'll Learn

    • Data preprocessing techniques including dummy variables and standardization
    • Machine learning model training and evaluation with logistic regression
    • SQL-Python integration for database management and data transfer

    Who This Is For

    • Aspiring data scientists seeking end-to-end project skills
    • Analysts transitioning to machine learning roles
    • IT professionals integrating data systems

    Key Benefits

    • Hands-on experience with real-world absenteeism dataset
    • Learn to create reusable Python modules for ML
    • Master Tableau visualization for model interpretation

    Curriculum Highlights

    1. Data preprocessing and feature engineering
    2. Machine learning application and model interpretation
    3. SQL-Python integration and Tableau analysis
    Focused display
    • language english
    • Training sessions 53
    • duration 4:16:20
    • Release Date 2025/05/27